تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,409 |
تعداد دریافت فایل اصل مقاله | 97,230,233 |
Markov Chain Monte Carlo Non-linear Geophysical Inversion with an Improved Proposal Distribution: Application to Geo-electrical Data | ||
فیزیک زمین و فضا | ||
مقاله 10، دوره 48، شماره 4، اسفند 1401، صفحه 107-124 اصل مقاله (1.96 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2022.339477.1007407 | ||
نویسندگان | ||
Zahra Tafaghod Khabaz1؛ Reza Ghanati* 2 | ||
1Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran. E-mail: zahratafaghod73@gmail.com | ||
2Corresponding Author, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran. E-mail: rghanati@ut.ac.ir | ||
چکیده | ||
Geophysical inverse problems seek to provide quantitative information about geophysical characteristics of the Earth’s subsurface for indirectly related data and measurements. It is generally formulated as an ill-posed non-linear optimization problem commonly solved through deterministic gradient-based approaches. Using these methods, despite fast convergence properties, may lead to local minima as well as impend accurate uncertainty analysis. On the contrary, formulating a geophysical inverse problem in a probabilistic framework and solving it by constructing the multi-dimensional posterior probability density (PPD) allow for complete sampling of the parameter space and the uncertainty quantification. The PPD is numerically characterized using Markov Chain Monte Carlo (MCMC) approaches. However, the convergence of the MCMC algorithm (i.e. sampling efficiency) toward the target stationary distribution highly depends upon the choice of the proposal distribution. In this paper, we develop an efficient proposal distribution based on perturbing the model parameters through an eigenvalue decomposition of the model covariance matrix in a principal component space. The covariance matrix is retrieved from an initial burn-in sampling, which is itself initiated using a linearized covariance estimate. The proposed strategy is first illustrated for inversion of hydrogeological parameters and then applied to synthetic and real geo-electrical data sets. The numerical experiments demonstrate that the presented proposal distribution takes advantage of the benefits from an accelerated convergence and mixing rate compared to the conventional Gaussian proposal distribution. | ||
کلیدواژهها | ||
Markov Chain Monte Carlo؛ Non-linear inverse problem؛ Perturbation models؛ Principal component analysis (PCA)؛ Proposal distribution | ||
مراجع | ||
Andrieu, C., & Thoms, J. (2008). A tutorial on adaptive MCMC. Statistics and Computing, 18, 343–373. Blatter, D., Key, K., Ray, A., Foley, N., Tulaczyk, S., & Auken, E. (2018). Trans-dimensional Bayesian inversion of airborne transient EM data from Taylor Glacier, Antarctica. Geophysical Journal International., 214(3), 1919–1936. Blatter, D., Ray, A., & Key, K. (2021). Two dimensional Bayesian inversion of magneto-telluric data using trans dimensional Gaussian processes. Geophysical Journal International, 226(1) 548–563. Cui, T., Fox, C., & O’Sullivan, M.J. (2011). Bayesian calibration of a large scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm. Water Resource Research, 47, 26. Dettmer, J., & Dosso, S.E. (2012). Trans dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains. Journal of the Acoustical Society of America, 132(4), 2239. Dosso, S.E, Holland, C.W., & Sambridge, M. (2012). Parallel tempering in strongly nonlinear geoacoustic inversion. Journal of the Acoustical Society of America, 132(5), 3030–40. Ferris, J.G., & Knowles, D.B. (1963). The slug-injection test for estimating the coefficient of transmissibility of an aquifer. Methods of Determining Permeability, Transmissibility and Drawdown, pages 299–304. U.S. Geological Survey. Gelfand, A.E., Hills, S.E., Racine-Poon, A., & Smith, A.F.M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of American statistics Association, 85, 972–985. Gelfand, A., & Smith, A. (1990). Sampling-based approaches to calculating marginal densities. Journal of American statistics Association, 85, 398–409. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721-741. Ghanati, R., & Müller-Petke, M. (2021). A homotopy continuation inversion of geoelectrical sounding data. Journal of Applied Geophysics, 191. Tafaghod Khabaz, Z., & Ghanati, R. (2023). Investigation of Smooth and Block inversion Characteristics of Electrical Resistivity Data. Scientific Quarterly Journal of Geosciences, doi: 10.22071/gsj.2022.319630.1962. Günther, T., & Müller-Petke, M. (2012). Hydraulic properties at the North Sea island of Borkum derived from joint inversion of magnetic resonance and electrical resistivity soundings. Hydrology and Earth System Sciences, 16, 3279–3291. Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm, Bernoulli, 7, 223-242. Haario, H., Laine, M., Mira, A., & Saksman, E. (2006). DRAM: Efficient adaptive MCMC. Statistics and Computing, 16, 339-354. Hastings, H. (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109. Higdon, D., Lee, H., & Bi, Z. (2002). A Bayesian approach To Characterizing uncertainty in inverse problems using coarse and fine-scale information. IEEE Transactions on Signal Processing, 50(2), 389–399. Koefoed, O. (1979). Geosounding Principles, Elsevier, Amsterdam. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., & Teller, A.H. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092. Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of American Statistics Association, 44, 335–341. Parasnis, D.S. (1986). Principles of Applied Geophysics. Chapman and Hall, London. Ray, A., Alumbaugh, D.L., Hoversten, G.M., & Key, K. (2013), Robust and accelerated Bayesian inversion of Marine controlled source electromagnetic data using parallel tempering. Geophysics, 78(6), E271–E280. Sambridge, M., & Mosengaard, K. (2002). Monte Carlo methods in geophysical inverse problems. Review Geophysics, 40(3). 3-1-3-29. Sambridge, M., Bodin, T., Gallagher, K., & Tkalcic, H. (2013). Trans-dimensional inference in the geosciences. Philosophical Transactions of the Royal Society A, 371, 20110547. Swendsen, R.H., & Wang, J.S. (1987). Non universal Critical dynamics in Monte Carlo simulations. Physics Review Letter, 58, 86–88. Tarantola, A. (1987). Inverse Problem Theory: Methods for Data Fitting and Model Parameter estimation, Elsevier, Amsterdam. Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. SIAM, 342. Ter Braak, C.J.F. (2006). A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Statistics and Computing, 16, 239-249. Vrugt, J.A., Ter Braak, C.F.F., Gupta, H.V., & Robinson, B.A. (2008). Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling. Stochastic Environmental Research and Risk Assessment, 23(7), 1011–1026. | ||
آمار تعداد مشاهده مقاله: 783 تعداد دریافت فایل اصل مقاله: 567 |