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Abstract 
Geophysical inverse problems seek to provide quantitative information about geophysical 

characteristics of the Earth’s subsurface for indirectly related data and measurements. It is generally 

formulated as an ill-posed non-linear optimization problem commonly solved through deterministic 

gradient-based approaches. Using these methods, despite fast convergence properties, may lead to 

local minima as well as impend accurate uncertainty analysis. On the contrary, formulating a 

geophysical inverse problem in a probabilistic framework and solving it by constructing the multi-

dimensional posterior probability density (PPD) allow for complete sampling of the parameter space 

and the uncertainty quantification. The PPD is numerically characterized using Markov Chain Monte 

Carlo (MCMC) approaches. However, the convergence of the MCMC algorithm (i.e. sampling 

efficiency) toward the target stationary distribution highly depends upon the choice of the proposal 

distribution. In this paper, we develop an efficient proposal distribution based on perturbing the 

model parameters through an eigenvalue decomposition of the model covariance matrix in a principal 

component space. The covariance matrix is retrieved from an initial burn-in sampling, which is itself 

initiated using a linearized covariance estimate. The proposed strategy is first illustrated for inversion 

of hydrogeological parameters and then applied to synthetic and real geo-electrical data sets. The 

numerical experiments demonstrate that the presented proposal distribution takes advantage of the 

benefits from an accelerated convergence and mixing rate compared to the conventional Gaussian 

proposal distribution.  
 

Keywords: Markov Chain Monte Carlo, Non-linear inverse problem, Perturbation models, Principal 

component analysis (PCA), Proposal distribution. 
 

1. Introduction 

Observations of the altered data consist of 

information regarding the Earth’s interior 

physical properties, which are not directly 

available to the surface or borehole 

measurements but are inferred by solving an 

inverse problem or an inductive reasoning 

process in a sense of logic. The data-earth 

interaction is described by a model that states 

the physical theory, an appropriate 

subsurface parameterization, and a statistical 

representation of the data error, which may 

also be characterized by parameters in the 

model. Geophysical inverse problems are 

generally formulated as an ill-posed non-

linear optimization problem commonly 

solved through Newton-based methods. The 

significant property of the gradient-based 

approaches (e.g. steepest descent, conjugate 

gradient, and Landweber iterative scheme) is 

their fast convergence toward the final 

solution, but the local linearization of the 

inverse solution hinders reliable uncertainty 

appraisal (i.e. underestimated or 

overestimated uncertainty). In addition, these 

algorithms may get trapped in local minima 

if the initial model is far from the 

convergence region of a global minimum of 

the cost function so that slight variations in 

starting model can lead to a notably different 

subsurface model (Ghanati & Müller-Petke, 

2021; Tafaghod Khabaz & Ghanati, 2023). A 

remedy to the exiting limitations is to employ 

derivative-free global direct search 

techniques, e.g. sampling of the posterior 

probability distribution using Markov Chain 

Monte Carlo (MCMC) algorithms in the 

Bayesian framework. The MCMC sampling 

is essentially a guided-random walk through 

the probable parts of the posterior model 

space (Tarantola, 1987; Sambridge & 

Mosengaard, 2002). With MCMC 

algorithms, the influence of the initial model 
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diminishes as the model space sampling 

progresses. The implementation of the 

MCMC algorithms requires the sampling of a 

large number of models, and consequently, 

the forward calculation of these models can 

be computationally expensive. Despite the 

advantages of the Bayesian inversion over 

the Newton-based optimization approaches, 

computational efficiency remains a critical 

factor for high-dimensional model spaces. 

However, with increasing computational 

power, the application of the Bayesian 

inversion methods toward large-scale 

problems is highly growing. In recent years, 

several variants of the MCMC algorithms 

have been proposed in the mathematical and 

geophysical literature. Beginning from the 

Metropolis-Hastings algorithm and Gibbs 

method (Metropolis & Ulam, 1949; Hastings, 

1970; Geman & Geman, 1984; Gelfand & 

Smith, 1990; Gelfand et al., 1990), different 

investigations on enhancing the efficiency of 

the MCMC algorithms have been 

implemented for better performance of the 

classical approaches. For instance, Haario et 

al. (2001) proposed a self-tuning algorithm 

namely the adaptive metropolis algorithm in 

which proposal values are sampled from a 

multivariate normal distribution with 

covariance matrix generated using the 

accepted samples of the chain. However, it 

was shown by Cui et al. (2011) that the 

proposal distribution used by the adaptive 

Metropolis method can be suboptimal in 

cases where the posterior distribution is non-

Gaussian. Later, they suggested the delayed 

rejection adaptive Metropolis method (Haario 

et al., 2006). Ter Braak (2006) introduced the 

differential evolution Monte Carlo algorithm. 

Vrugt et al. (2008) applied the idea of 

combining the differential evolution 

technique and the adaptive Metropolis to 

hydrological data. An accelerated variant of 

the MCMC technique is the parallel 

tempering algorithm (Swendsen & Wang, 

1986) in which multiple chains are simulated 

but are allowed to swap information. This 

method can be much more efficient than the 

classic Metropolis-Hastings algorithm for 

problems involving multi-modal posterior 

distributions (Higdon et al., 2002; Dettmer & 

Dosso, 2012; Sambridge, 2013). Recent 

examples of parallel tempering as applied to 

geophysical inversion can be found in Dosso 

et al. (2012), Ray et al. (2013), Blatter et al. 

(2018), and Blatter et al. (2021). Despite 

significant improvements in MCMC 

sampling methods, choosing an appropriate 

proposal distribution, used to generate trial 

moves in the Markov chain, is of crucial 

importance for an efficient inversion process 

that creates a well-mixed Markov-Chain, that 

is, chain samples widely over the model 

parameters space avoiding both high 

rejection rates and small steps. Note that the 

mixing of a Markov chain is the number of 

steps the Markov chain must take before its 

probability distribution reaches the stationary 

distribution (Andrieu & Thoms, 2008). The 

common choice for proposal density is a 

Gaussian distribution centered on the current 

model and variance tuned by the user. The 

variance parameter determines the step 

length at each MCMC iteration. When the 

width of the proposal distribution is too wide, 

the acceptance ratio is small, and therefore 

the chain will not mix efficiently and 

converge only slowly to the target 

distribution. On the other hand, if the width 

of the proposal distribution is too narrow, 

nearly all candidate models are accepted, but 

the chain mixes again very slowly. In this 

paper, to improve the functionality of the 

Metropolis-Hastings sampler in terms of the 

faster convergence of the chain and good 

mixing properties, we develop an efficient 

proposal distribution based on perturbing the 

model parameters through an eigenvalue 

decomposition of the model covariance 

matrix using principal component analysis 

(PCA). The covariance matrix is retrieved 

from an early burn-in sampling, which itself 

commences using a linearized covariance 

estimate. The proposed algorithm is first 

applied to a hydrogeological problem to 

recover the hydrogeological parameters (i.e. 

transmissivity and specific yield). Then, our 

algorithm is used for nonlinear inversion of 

synthetic and real geo-electrical sounding 

data based on multiple depth layers of the 

fixed boundary. The article is organized as 

follows: in section 2 we briefly provide the 

theoretical framework of the Metropolis-

Hastings algorithm and the presented 

proposal distribution. In section 3, we apply 

our algorithm to hydrogeological and 

geophysical synthetic and real data and 

compare the results to conventional Gaussian 
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proposal distribution. Finally, we conclude 

the paper with a brief discussion in section 4. 
 

2. Methodology  

The aim of solving an inverse problem in the 

Bayesian inference framework is to 

numerically sample the probability density 

called the posterior distribution for a given 

set of observations and prior information. By 

the rules of the conditional probabilities, the 

posterior can be inverted based on the Bayes’ 

theorem in which the prior probability 

distribution and the likelihood function are 

combined and formulated as (Tarantola, 

2005): 

Ω(𝐦|𝒅) =
Ω(𝒅|𝐦)Ω(𝐦)

Ω(𝒅)
                                (1) 

The term Ω(𝒅|𝐦) can be interpreted as the 

likelihood function (𝐿(𝒅|𝐦)) that is the 

density function of the observed data 

𝒅 ∈ 𝕹𝑚×1 given the model parameters 

𝐦 ∈ 𝕹𝑛×1. The likelihood function depends 

on the statistics of the noise distribution. The 

unconditional distribution of the unknowns, 

𝑃(𝐦), is called the prior distribution. This 

describes the knowledge about the unknowns 

that existed before or exists independent of, 

the current observations. The quantity Ω(𝒅), 
known as the evidence, is a normalization 

constant to guarantee that the sum of the 

posterior probability distribution is unity (i.e. 

∫Ω(𝐦|𝒅) 𝑑𝐦 = 1). Here, italics present 

scalar quantities, boldface lowercase letters 

vectors, and boldface capital letters matrices. 

The superscript T is used to indicate the 

transpose of an operator. 

Assuming that the data error to be 

independent uncorrelated zero-mean 

Gaussian, we define the likelihood function 

by the relation (Tarantola, 2005): 
 

𝐿(𝒅|𝐦) =
1

2𝜋𝑚/2(∏ 𝜎𝑖
2𝑚

𝑖=1 )1/2
. 𝑒𝑥𝑝{−0.5(𝒅 −

𝑭(𝐦))
𝑇
𝑪𝑑
−1(𝒅 − 𝑭(𝐦))}                               (2) 

Equivalently 

𝐿(𝒅|𝐦) =
1

2𝜋𝑚/2(∏ 𝜎𝑖
2𝑚

𝑖=1 )1/2
. 𝑒𝑥𝑝(−∑

(𝒅𝑖−𝑭(𝐦)𝑖)
2

𝜎𝑖
2

𝑚
𝑖=1 )  (3) 

  

Whereas computing the log-likelihood is 

preferable, taking the logarithm of Equation 

(3) results in: 
 

log 𝐿(𝒅|𝐦) = −
𝑚

2
log(2𝜋) −

1

2
log(∏ 𝜎𝑖

2𝑚
𝑖=1 ) −

1

2
(𝒅 − 𝑭(𝐦))

𝑇
𝑪𝑑
−1(𝒅 − 𝑭(𝐦))                      (4) 

If 𝜎𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 

log 𝐿(𝒅|𝐦) = −
𝑚

2
log(2𝜋) −

𝑚

2
log(𝜎𝑖

2) −
1

2
(𝒅 − 𝑭(𝐦))

𝑇
𝑪𝑑
−1(𝒅 − 𝑭(𝐦))                      (5) 

 

where 𝑪𝑑 is the data error covariance matrix, 

𝑭 is the non-linear forward operator, and 𝜎 is 

the data error. 

We incorporate smoothness constraints into 

the model parameters by imposing 

independent normal distributions to the 

vertical model gradient. Hence, we define 

zero-mean normal prior distributions 

concerning the vertical resistivity gradient as 

follows: 

𝑝(𝐦) =
1

2𝜋𝛽2
exp[−

1

2𝛽2
(𝐦𝑇𝚺𝑇𝚺𝐦)]              (6) 

Taking the logarithm of Equation (6) results 

in the following statement, which is called 

log-prior probability density function: 

log 𝑝(𝐦) = − log(2𝜋𝛽2) −
1

2𝛽2
(𝐦𝑇𝚺𝑇𝚺𝐦)   (7) 

where 𝛽 is analogous to model regularization 

weights used in the deterministic inversion. 

The smaller the value of 𝛽, the higher the 

weight given to the regularization. To 

effectively solve the inverse problem, the 

posterior distribution Ω(𝐦|𝒅) is sampled by 

the Metropolis-Hastings (MH) sampler 

(Metropolis et al., 1953; Hastings, 1970), 

which is an MCMC algorithm. The MH 

algorithm draws a sequence of random 

samples (solutions) from the posterior 

density that has the ergodic property, i.e. that 

allows expectations over the posterior 

distribution to be replaced by averages over 

the chain. Informally, we think of an ergodic 

chain as one that spends time in each region 

of parameter space proportional to the 

posterior probability of that region (Cui et al., 

2011). The MH method proceeds in two 

steps. At the first step, a candidate model 𝑚𝑝 

is created using a proposal density 

𝑝(𝐦𝑝|𝐦𝑐) based on the current model 𝐦𝑐 

(i.e., the proposed method generates 

perturbed values, which are added to current 

parameters leading to new samples); at the 

second step, it is decided that the candidate 

(proposal) model is either accepted or 

rejected using the MH acceptance condition. 

The MH algorithm is summarized in Table 1 

in the context of our new proposal 

distribution.



110                                Journal of the Earth and Space Physics, Vol. 48, No. 4, Winter 2023 

 

Table 1. Metropolis-Hastings based MCMC algorithm. 

Input: 𝐦0 ∈ ℝm×1, forward function 𝐹(𝐦), 𝑀 (number of iterations), proposal distribution 

𝑞(𝐦𝑝|𝐦𝑐),𝜌𝑙𝑏(lower boundary), 𝜌𝑢𝑏(upper boundary), 𝛾 = 1 and 𝜇 = 0. 

Output: a matrix 𝑚 ×𝑀 of the model parameters 

for 𝑘 = 1 to 𝑀 − 1 do 

Compute a new model proposal 𝐦𝑝 from 𝑞(𝐦𝑝|𝐦𝑐) where 𝐦𝑝 is generated in principal component 

space   

Check whether the resistivity of each layer falls within the interval [𝜌𝑙𝑏 , 𝜌𝑢𝑏], otherwise draw a new 

model proposal 𝐦𝑝 

Calculate  

α(𝐦𝑝|𝐦𝑐) = min(1,
p(𝒅|𝐦𝑝)p(𝐦𝑝)q(𝐦𝑝|𝐦𝑐)

p(𝒅|𝐦𝑐)p(𝐦𝑐)q(𝐦𝑐|𝐦𝑝)
) 

Draw U~𝒩(𝜇, 𝛾) 

If log𝑈 < log 𝛼 (𝐦𝑝|𝐦𝑐) then 

Accept 𝐦0 = 𝐦𝑝 

else 

𝐦0 = 𝐦𝑘−1 

end If 

end for 

 

The acceptance probability, 𝛼(𝐦𝑝|𝐦𝑐), of 

the candidate model judges whether the new 

model is accepted to the Markov Chain or 

rejected. In other words, the acceptance 

probability is the key to guaranteeing that the 

Markov chain converges to the posterior 

distribution since it draws samples according 

to the posterior’s density. In the case of 

symmetric proposal density, where the move 

from 𝐦𝑐 to 𝐦𝑝 is equally as likely as a move 

from 𝐦𝑐 to 𝐦𝑝, the acceptance probability 

can be written as:  

α(𝐦𝑝|𝐦𝑐) = min(1,
p(𝒅|𝐦𝑝)p(𝐦𝑝)

p(𝒅|𝐦𝑐)p(𝐦𝑐)
)         (8) 

It is assumed that all the parameters within 

𝐦𝑝 fall within the prior bounds for the 

allowed variation of electrical resistivity. The 

proposal distribution from which we choose 

new points for the chain can be quite 

arbitrary, but the choice of a distribution that 

most closely resembles the true target density 

can considerably accelerate the convergence 

of the values created to the correct 

distribution. The closer the proposal 

distribution 𝑞 is to the actual target Ω(𝐦|𝒅), 
the better the chain mixes and the better a 

short sequence represents a random draw 

from the posterior. It is particularly true in 

multi-dimensional problems and when there 

is a correlation between the elements of the 

model parameters. The usual choice for 

proposal density is a Gaussian distribution 

centered on the current model and standard 

deviation adjusted by the user. Using this 

strategy for cases with many model 

parameters is usually laborious in terms of 

computing time and user input since many 

short trial runs have to be made. To 

overcome this difficulty, we present an 

efficient proposal scheme based on the 

principal component transformation and 

eigenvectors decomposition of the covariance 

matrix estimated from the deterministic 

inversion. To generate new (perturbed) 

model parameters using our proposal method, 

one needs to implement the following stages: 

1) Calculate the model covariance matrix 

using the linearized inversion (deterministic 

inversion) results, that is, 𝑪𝑚 = 𝐽†𝐽, where 𝐽 
is the jacobian matrix and 𝐽† is the 

regularized generalized inverse of the matrix 

𝐽. 
2) Decompose the covariance matrix 𝑪𝑚 in 

terms of the diagonal matrix 𝑫 of 

eigenvalues and matrix 𝑽 whose columns are 

the corresponding right eigenvectors  

3) Transform the model parameters (the 

current model) into principal component 

space leading to the rotated parameters: 

�̂� = 𝑽𝑇𝐦, where 𝑇 is the transpose.  

4) Draw parameter perturbations using a 

Cauchy proposal distribution with 𝑫 degrees 

of freedom (scaling factor). In the Matlab 

environment, 

𝐦𝑝𝑒𝑟𝑡𝑢𝑟𝑏 = trnd(diag(𝑫),𝑚, 1), where 𝑚 is 

the number of model parameters.  
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5) Calculate the candidate model (proposal 

model) through adding the rotated parameters 

(�̂�) to the parameter perturbations derived 

from step 4, that is, �̂� = �̂� +𝐦𝑝𝑒𝑟𝑡𝑢𝑟𝑏 

6) Rotate the proposal model back to the 

original parameters 𝐦 = 𝑽�̂�.  

Step 1 is implemented only at the first 

iteration. Note that the starting model of the 

MH algorithm corresponding to the first 

iteration is obtained from the linearized 

inversion. In the case of the generation of 

parameter perturbations in stage 4, Gaussian 

distribution can be used instead of Cauchy 

distribution, but note that Gaussian 

perturbations may not be large enough to 

transit between potentially disjoint regions of 

high probability. The Cauchy distribution has 

heavier tails causing much wider sampling, 

and consequently better exploring the model 

space. Hence, we employ a Cauchy proposal 

distribution in rotated space, scaled according 

to the estimated rotated covariance matrix. 

As earlier mentioned, the covariance matrix 

obtained from the deterministic inversion is 

used during the burn-in phase, and as 

sampling progresses the covariance matrix is 

adaptively replaced with an alternative 

computed based on averaging over 

successive models along the Markov chain, 

as follows: 

𝑾𝐦 = ∑ (𝐦𝑖 −𝐦𝑖−1)(𝐦𝑖 −𝐦𝑖−1)
𝑇𝑛

𝑖=1           (9) 

From the theory of the MCMC algorithm, 

each sample is only dependent on the sample 

drawn directly before it and not earlier 

samples in the chain, however, using the 

adaptive covariance matrix constructed by 

the previous values violates the Markovian 

property. However, it can be proved that the 

proposed algorithm maintains the correct 

ergodicity properties.  

We also impose lower and upper limits of the 

resistivity values based on the physical 

meaning of the resistivity distribution after 

drawing the proposed model. It means that 

the candidate models, which are out of the 

prior information are discarded and the 

sampling process is repeated. In the 

following, we first apply the proposed 

algorithm to two synthetic examples in terms 

of hydrogeological and geo-electrical 

problems and a real 1D resistivity data set. 

 

3. Numerical examples 

In this section, the functionality of our 

proposed scheme in comparison with the 

conventional Gaussian proposal distribution 

is tackled by synthetic and real examples in 

terms of the convergence rate of the chain 

and mixing properties. 

 

3-1. Hydrogeological example (Slug test) 

We first compare the presented algorithm 

with the traditional by inverting  

the hydrogeological parameters. A common 

practice in hydrogeology for determining  

the storage coefficient and transmissivity  

of a water-bearing layer is called the  

slug test. A known volume of water (𝑄)  

is injected into a well, and the variations  

of the water level (𝑦) at an observation well  

a distance (𝑑) away from the injection well 

are measured at different times. The water 

level recorded at the observation well 

increases rapidly and then decreases more 

slowly. The objective is to estimate the 

transmissivity (𝑆) and the storage coefficient 

(𝑇) based on the field observations. 

Mathematically, the function corresponding 

to the Slug test is defined as (Ferris & 

Knowles, 1963). 

𝑦 =
𝑄

4𝜋𝑇𝑡
exp(−𝑆𝑑

2

4𝑇𝑡⁄ )                         (10) 

It is seen that the data (water level) are 

nonlinearly related to the unknown 

parameters leading to a non-linear 

optimization problem with a convex cost 

function. Using Equation (2) and the 

parameters defined in Table 2, the synthetic 

data are generated and corrupted by 5 percent 

uncorrelated Gaussian-distributed noise of 

zero mean. The noise level (standard 

deviation of the Gaussian distribution) is 

defined based on the amplitude of each 

datum.

 
Table 2. True parameters defined for the Slug test. 

𝑄(𝑚3) 𝑇 𝑆(𝑚
2

ℎ𝑟⁄ ) 𝑑(𝑚) 𝑡(ℎ𝑟) 

50 0.58 0.002 60 [5, 10, 20, 30, 40, 50] 
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To estimate the model parameters of the Slug 

test, the MCMC algorithm based on the 

Gaussian proposal density and the PCA-

based proposal distribution is implemented. 

The conventional MCMC algorithm is 

initialized from [𝑆0 = 0.1, 𝑇0 = 3] with a 

total of 1,000,000 iterations while the 

proposed sampling method starts with the 

model parameters derived from the linearized 

inversion with a total of 250,000 iterations 

with burn-in of 50 percent. It is well-known 

that the samples generated/accepted at the 

beginning of the chain during the burn-in 

phase may not precisely represent the PPD 

function. As a result, these samples are 

usually discarded in the computation of 

posterior distribution. It is also noticed that 

the length of the burn-in stage depends on the 

complexity of the problem being solved and 

on the shape and size of the proposal 

distribution used to implement the MCMC 

algorithm. Figures 1 and 2 illustrate the 

outcome of both algorithms. It is observed 

that both algorithms well sample the target 

distribution, however, the proposed method 

converges to the target distribution with less 

number of iterations compared to the 

conventional proposal density (100,000 

iterations versus 500,000 iterations). This 

property can be significant when the forward 

calculation is computationally expensive, and 

it is ideal to explore the target distribution 

with less number of the forward modeling 

evaluations. The autocorrelation plots of the 

log-posteriors in terms of different lags of the 

samples generated by the Gaussian proposal 

distribution and the presented algorithm are 

shown in Figures 1 and 2, respectively. From 

the autocorrelation results, there is higher 

autocorrelation in the samples obtained from 

the conventional scheme compared to those 

of the proposed strategy. The autocorrelation 

function is a useful proxy to evaluate the 

sample variability and the mixing of the 

Markov chain. A high autocorrelation at lags 

simply indicates a rather poor mixing of the 

chain.

 

 
(a) 

 
                                                  (b)                                                       (c) 

Figure 1. The resulting MCMC sampling using the conventional Gaussian proposal distribution: a) Two-dimensional 

scatter plot of the samples from the Slug test, b) the autocorrelation plot of different lags from sample 𝑆, and 

c) the autocorrelation plot of different lags from sample 𝑇 generated by using the conventional Gaussian 

proposal distribution-based MCMC sampling method. 
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(a) 

 
                                                   (b)                                                      (c) 

Figure 2. The resulting MCMC sampling using the presented proposal distribution: a) Two-dimensional scatter plot of 

the samples from the Slug test, b) the autocorrelation plot of different lags from sample 𝑆, and c) the 

autocorrelation plot of different lags from sample 𝑇 generated by using the PCA-based proposal algorithm. 

 

To better demonstrate the potential 

superiority of the PCA-based proposal for 

parameter perturbations, Figures 3 and 4 

display the MCMC sampling history for two 

parameters, 𝑆 and 𝑇 generated by applying a 

Gaussian proposal density, and by applying 

the PCA proposal scheme, respectively. 

Comparing the sampling histories, the PCA 

proposal ameliorates mixing of the chain and 

creates an MCMC chain varying more 

rapidly (appears to have higher frequency 

content).
 

 
Figure 3. The trace plots of samples corresponding to the Slug test generated using the conventional Gaussian proposal 

distribution-based MCMC sampling method on the left and the resulting histogram on the right. 
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Figure 4. The trace plots of samples corresponding to the Slug test generated using the PCA proposal distribution on the 

left and the resulting histogram on the right. 

 

This ameliorated sampling is demonstrated 

further by the marginal densities displayed to 

the right of the trace plots of samples. The 

marginal density for the PCA proposal 

converges to relatively smooth distributions 

(in particular, 𝑇) while those for the Gaussian 

proposal are rough and appear under-

sampled. 
 

3-2. Synthetic data examples 

Here, we evaluate our novel proposal 

distribution versus the conventional method 

by applying the proposed algorithm  

to synthetic data computed for two models 

based on multiple depth layers of  

fixed boundary (i.e. invariant geometry).  

In invariant geometry inversion (also  

called smooth inversion) with predefined 

layer thicknesses of logarithmically 

increasing with depth, a distribution of  

the subsurface resistivity is recovered. As  

 

a general rule, the main advantage of  

using the smooth inversion compared to  

the block inversion in 1D geophysical 

modeling (e.g. electromagnetic and  

geo-electrical sounding) is that the smooth 

inversion requires little a priori knowledge 

about the subsurface layering characteristics 

bringing about smoothly varying features  

in the resultant model. However, in  

cases where a known number of layers  

are present, the block inversion strategy  

may be preferable allowing to construct 

piecewise constant resistivity profiles.  

The example uses a synthetic earth  

model including five-layered earth with  

a shallow and a deep unconfined aquifer  

that is separated by a low resistive layer 

acting as an aquiclude basement to the 

shallow aquifer. Table 3 summarizes the 

geoelectrical parameters associated with the 

synthetic case. 

Table 3. True geo-electrical parameters of the synthetic five-layer earth example 

geo-electrical parameters 

Resistivity (Ω.𝑚) 𝜌1 = 200 𝜌2 = 30 𝜌3 = 300 𝜌4 = 20 𝜌5 = 500 

Thickness (m) ℎ1 = 2.5 ℎ2 = 8.7 ℎ3 = 51.3 ℎ4 = 30 Half-space 
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Knowing the physical theory of direct current 

geo-electrical sounding relating the model 

parameters 𝐦, composed of 𝑀 uniform 

isotropic layers with the resistivity values 

[𝜌1, 𝜌2, … , 𝜌𝑀] and layer thicknesses 

[ℎ1, ℎ2, … , ℎ𝑀−1], and the apparent resistivity 

values 𝜌𝑎, the forward response in terms of 

the Schlumberger configuration is calculated 

by an integral equation as follows: 
 

𝜌𝑠𝑎(𝐿,𝑚) = 𝑆2{∫ 𝑊(𝜌𝑖 , ℎ𝑖; 𝜆)
∞

0
𝐽1(𝜆𝑆)𝜆𝑑𝜆}; 𝑖 =

(1, 2, … ,𝑀)                                                 (11) 
 

where 𝑆 denotes half the current electrode 

spacing, 𝜆 is the integration variable, 𝐽1(𝜆𝑆) 
is the first-order Bessel function of the first 

kind, and 𝑊(𝜌𝑖, ℎ𝑖; 𝜆) stands for the 

resistivity transform function calculated 

using the recurrence relationships from the 

bottom to the surface. This integral equation 

can be solved using a linear digital filter 

based on the Johansson method. Appendix A 

provides a detail of the recurrence formulae 

for all kernel functions. Two approaches for 

solving the geo-electrical sounding inverse 

problem are commonly used in terms of layer 

boundaries. These methods are defined based 

on models with variant and invariant 

geometry. For variant geometry inversion, 

the models are divided into a few layers with 

variable boundaries where both the values of 

the resistivity and thickness in each layer are 

allowed to vary. The invariant geometry 

inversion is based on the assumption that the 

Earth is divided into many layers with fixed 

boundaries so that only the resistivity in each 

layer is allowed to vary. In this paper, we 

follow the latter strategy. The synthetic 

measurements are created using a 

Schlumberger array with 16 𝐴𝐵/2 spreads 

ranging from 1.25 to 1000 𝑚 on the 

simulated earth model with the geo-electrical 

parameters represented in Table 3. Then, the 

data are contaminated with uncorrelated 

Gaussian random noise having a standard 

deviation 𝜎𝑝𝑟𝑖𝑜𝑟 of 5% of the amplitude of 

each datum, which was then considered as 

the prior data noise level during inversion. To 

explore the posterior model space, the 

MCMC sampler is implemented in two steps; 

at the first stage, a model including the 

subsurface resistivity distribution is proposed 

using the proposal density function, and at 

the second stage, the candidate model is 

either accepted or rejected depending on the 

likelihood of the model compared to the 

likelihood of the last accepted model. We run 

the MCMC algorithm with this synthetic 

dataset using the Gaussian proposal density 

and the PCA-based proposal distribution for 

500,000 and 250,000 iterations, respectively. 

During the Bayesian inversion, lower and 

upper limits for the model parameters are 

defined such that the resistivity values are 

confined between [0, 1000]𝛺.𝑚. The 

resulting Bayesian inversion corresponding 

to the Gaussian proposal distribution and the 

PCA proposal scheme are illustrated in 

Figures 5 and 6, respectively. Both MCMC 

algorithms capture the true model in  

the sense that it lies within the 95 percent 

confidence interval at nearly all depths.  

In addition, the MCMC sampling provides 

uncertainty estimates for resistivity at  

each depth-estimates that depend on the  

data, the forward modeling and the model 

parameterization. To further assess the  

results of this example, we perform MCMC 

diagnostics to evaluate the MCMC sample 

quality. We generate individual trace  

plots for four parameters (𝐦5,𝐦10,𝐦15,  
and 𝐦20) of the subsurface layers obtained 

by applying a Gaussian proposal density  

(see Figure 7), and by applying the  

PCA proposal method (see Figure 8) to 

assess the chain convergence. Therein, we 

observe that the proposed algorithm is better 

mixing and has reached the stationary region 

of the target density with less number of 

iterations compared to the conventional 

method.
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                                        (a)                                                   (b) 
 

Figure 5. Posterior model results derived from the Gaussian proposal density-based MCMC method for the five-layer 

synthetic case: a) observed data versus calculated data with the error bars, b) the posterior probability density 

of resistivity as a function of depth. The black line shows the mean posterior models and the blue line 

indicates true values of the model parameters. Lower and upper intervals computed based on 95 percent 

confidence interval are displayed by dashed blue and red lines, respectively. 
 

 
                                        (a)                                                  (b) 
 

Figure 6. Posterior model results derived from the PCA proposal density-based MCMC method for the five-layer 

synthetic case: a) observed data versus calculated data with the error bars, b) the posterior probability density 

of resistivity as a function of depth. The black line shows the mean posterior models and the blue line 

indicates true values of the model parameters. Lower and upper intervals computed based on 95 percent 

confidence interval are displayed by dashed blue and red lines, respectively. 
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3-3. Real data example 

Given the success of the synthetic example, 

we finally provide a field data set with 

known geology information aiming at further 

appraising the efficacy of the proposed 

procedure. Again, we compared the results of 

the proposed scheme with those of the 

conventional method. The field data has been 

acquired on the German North Sea Island 

Borkum, utilizing the Schlumberger 

configuration including 23 apparent 

resistivity records with current electrode 

spacing ranging logarithmically from 1.5 m 

to 150 m. 
 

 
Figure 7. The trace plot of posterior samples corresponds to the synthetic example generated by the conventional 

Gaussian proposal distribution-based MCMC sampling method on the left and the resulting histogram on the 

right. Here, only four model parameters variation in terms of different iterations is shown.  

 

 
 

Figure 8. The trace plot of posterior samples corresponds to the synthetic example generated by the PCA proposal 

distribution-based MCMC sampling method on the left and the resulting histogram on the right. Here, only 

four model parameters variation in terms of different iterations is shown. 
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This site was chosen based on the 

accessibility of nearby lithology borehole 

information. Based on the drill hole, the 

geology section is characterized by a vadose 

zone with a thickness of 3 m, followed by the 

first aquifer composed of well-sorted fine 

sands until a depth of 23 m, followed by 

alternating sequences of fine sand and clay to 

a depth of 32 m as an aquitard basement to 

the shallow aquifer. The second fresh water-

bearing layer at about 32 to 49 m can also be 

identified, which is composed of poorly 

sorted fine sands mixed with fine clay layers. 

There is a transition zone from fresh to saline 

water separating aquifer 2 and aquifer 3 at 

this depth (Günther & Müller-Petke, 2012). 

We follow the inversion strategy described 

for the synthetic experiment. We implement 

the MCMC sampler with the Gaussian 

proposal density and the PCA-based proposal 

distribution for 300,000 and 150,000 

iterations, respectively. From the geological 

information, during the Bayesian inversion,  

 

lower and upper limits for the model 

parameters are defined such that  

the resistivity values are confined within  

the interval 1 ≤ 𝜌(Ω.𝑚) ≤ 5000. Figure 9 

shows the result provided by the 

conventional approach whereas Figure 10 

illustrates the posterior models estimated  

by the PCA proposal density-based MCMC 

algorithm. When viewing Figures 9 and  

10, we notice that both strategies give rise  

to relatively similar results; however,  

the geo-electric profiles of the Gaussian 

proposal density show higher variability  

than the PCA proposal procedure. In  

other words, the regions with larger 

uncertainty are characterized by broader 

distribution. Referring to the resulting geo-

electric profiles and as would be expected 

since the variant geometry inversion requires 

a priori information about the layer 

thicknesses, the estimated uncertainty is 

consistently larger than the invariant 

geometry inversion. 

 
                               (a)                                                   (b)                                  (c) 
 

Figure 9. Posterior model results derived from the Gaussian proposal density-based MCMC method for the real case: a) 

observed data versus calculated data with the error bars, b) the posterior probability density of resistivity as a 

function of depth, c) information of a borehole lithology. The black line shows the mean posterior models and 

the blue line indicates true parameter values. Lower and upper intervals computed based on 95 percent 

confidence interval are displayed by dashed blue and red lines, respectively. 
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                             (a)                                                    (b)                                (c) 
 

Figure 10. Posterior model results derived from the PCA proposal density-based MCMC method for the five-layer 

synthetic case: a) observed data versus calculated data with the error bars, b) the posterior probability density 

of resistivity as a function of depth, c) Information of a borehole lithology. The black line shows the mean 

posterior models and the blue line indicates true parameter values. Lower and upper intervals computed 

based on 95 percent confidence interval are displayed by dashed blue and red lines, respectively. 

 

 
 

Figure 11. The trace plot of posterior samples corresponds to the real example generated by the conventional Gaussian 

proposal distribution-based MCMC sampling method on the left and the resulting histogram on the right. 

Here, only four model parameters variation in terms of different iterations is shown.  
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Figure 12. The trace plot of posterior samples corresponds to the real example generated by the presented proposal 

distribution-based MCMC sampling method on the left and the resulting histogram on the right. Here, only 

four model parameters variation in terms of different iterations is shown. 

 

To further assess the results of this example, 

we perform MCMC diagnostics to evaluate 

the MCMC sample quality. We produce 

individual trace plots for four neighboring 

model parameters, (𝐦2,𝐦4,𝐦6, and 𝐦8) of 

the subsurface layers obtained by applying a 

Gaussian proposal density (see Figure 11), 

and by applying the PCA proposal method 

(see Figure 12) to assess the chain 

convergence. Therein, the Gaussian proposal 

scheme exhibits a slower mixing rate and 

higher correlation for the corresponding 

parameters leading to not extensively 

exploring the sample space compared to the 

proposed algorithm. Furthermore, our 

algorithm has reached the stationary region 

of the target density with less number of 

iterations (here, the trace plot of posterior 

samples are shown after discarding the 

burnin phase samples) compared to the 

conventional method. 

 

 
Figure 13. The autocorrelation plot of different lags for the posterior density derived from the Gaussian proposal 

distribution in the real case. 
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Figure 14. The autocorrelation plot of different lags for the posterior density derived from the PCA proposal distribution 

in the real case. 

 

The autocorrelation plots of the log-posteriors in terms of different lags of the samples generated 

by the Gaussian proposal distribution and the 

presented algorithm are shown in Figures 13 

and 14, respectively. From the 

autocorrelation results, there is higher 

autocorrelation in the samples obtained from 

the conventional scheme compared to those 

of the proposed strategy. Despite the 

advantage of the proposed algorithm over the 

conventional method, it should also be 

noticed that the implementation of the 

proposed approach depends upon the 

availability of the linearized inversion of the 

corresponding inverse problem. In addition, 

it is required to consider a strategy to monitor 

the convergence of the proposed MCMC 

algorithm. It can be a future work to detect 

convergence; i.e. how long should we run an 

MCMC chain.  

 

4. Conclusion 

The Markov Chain Monte Carlo inversion is 

aimed at accurately exploring the posterior 

model. A significant reason of the Bayesian 

inversion success depends on the shape and 

size of the proposal distribution used to 

implement the MCMC algorithm. Choosing 

an appropriate proposal density for the 

Metropolis-Hastings acceptance step is non-

trivial. As the rejection rate increases, the 

computational cost for accepting a proposal 

sample increases. To overcome this problem, 

we developed an adaptive Metropolis-

Hastings based on perturbing the model 

parameters through an eigenvalue 

decomposition of the model covariance 

matrix using principal component analysis 

(PCA). The Bayesian inversion commences 

with a linearized covariance estimated from a 

deterministic inversion. The covariance 

matrix obtained from the deterministic 

inversion is used during the burn-in phase, 

and as sampling progresses the covariance 

matrix is adaptively replaced with an 

alternative computed based on averaging 

over successive models along the Markov 

chain. This approach applies perturbations in 

principal component space where rotated 

parameters are uncorrelated, with the 

eigenvectors providing the rotation matrix 

and the eigenvalues providing appropriate 

perturbation length scales. The proposed 

scheme was examined for the inversion of 

simulated Slug test to recover the 

hydrogeological parameters, i.e. 

transmissivity and specific yield as well as 

for inversion of synthetic and real geo-

electrical sounding data based on multiple 

depth layers of the fixed boundary. The 

numerical results indicated that the PCA 

perturbation proposal scheme significantly 

improved the efficiency of the MCMC 

sampler over the conventional Gaussian 

perturbation in terms of the faster 

convergence of the chain and good mixing 

properties. In future work, we would provide 

an application of the proposed procedure to 

large-scale non-linear geophysical problems 

such as electrical resistivity tomography. 
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Appendix A. 

 

Recurrence relationships for kernel functions to compute the surface electrical potential at any 

point in a layered medium. 

Referring to Koefoed (1979) and Parasnis (1986), the electrical potentials in the first layer and the 

substratum read: 

𝑉1 =
𝐼𝜌1

2𝜋𝑟
∫ exp(−𝜆𝑧)𝐽0(𝜆𝑟)𝑑𝜆
∞

0
+ ∫ 𝐴1(𝜆)[exp(−𝜆𝑧) + exp(𝜆𝑧)]𝐽0(𝜆𝑟)𝑑𝜆

∞

0
                          (A-1) 

𝑉𝑛 = ∫ 𝐴𝑛(𝜆)[exp(−𝜆𝑧)]𝐽0(𝜆𝑟)𝑑𝜆
∞

0
                                                                                           (A-2) 

And the electrical potential in any layer 𝑖(𝑖 ≠ 1, 𝑜𝑟𝑛) is: 

𝑉𝑖(𝑟, 𝑧) = ∫ [𝐴𝑖(𝜆)exp(−𝜆𝑧) + 𝐵𝑖(𝜆)exp(𝜆𝑧)]𝐽0(𝜆𝑟)𝑑𝜆
∞

0
                                                         (A-3) 

where 𝐽0 is the Bessel function of the first kind of order-zero and 𝑧 shows the positive downward. 

𝐴1, … , 𝐴𝑛 and 𝐵2, … , 𝐵𝑛−1 are unknown functions of the earth parameter and the real number 𝜆. 

Conventionally, one is only interested in finding the potential at the surface of the earth, so only the 

coefficient 𝐴1 needs to be found. The recurrence formulae for 𝐴1 was given by Koefoed (1979) and 

Parasnis (1986). However, we need the potential at any point in a layered earth. Thus, we have to 

find all coefficients 𝐴1, … , 𝐴𝑛 and 𝐵2, … , 𝐵𝑛−1. They can be determined by solving the system of 

2(𝑛 − 1) linear equations obtained from the continuity conditions of the potential and the normal 

current density at the layer interfaces 𝐻𝑖(𝑖 = 1, . . . , 𝑛 − 1). The solution is straightforward but 

tedious. The solutions are: 

𝐴1 =
𝐼𝜌1

2𝜋
exp(−2𝜆ℎ1)

𝑃1,2

1−𝑃1,2𝑒xp(−2𝜆ℎ1)
                                                                                         (A-4) 

𝐴2 =
𝐼𝜌1

2𝜋

1+𝑃1,2

1−𝑃1,2𝑒xp(−2𝜆ℎ1)

1

1+𝑃2,3𝑒xp(−2𝜆ℎ2)
                                                                                     (A-5) 

𝐵2 = 𝑃2,3exp(−2𝜆𝐻2)𝐴2                                                                                                             (A-6) 

𝐴𝑛 = (1 + 𝑃𝑛−1,𝑛)𝐴𝑛−1                                                                                                               (A-7) 

𝐴3, … , 𝐴𝑛−1and 𝐵3, … , 𝐵𝑛−1 are given by 

𝐴𝑖 =
1+𝑃𝑖−𝑖,𝑖

1+𝑃𝑖,𝑖+1𝑒xp(−2𝜆ℎ𝑖)
𝐴𝑖−1                                                                                                          (A-8) 

𝐵𝑖 = 𝑃𝑖,𝑖+1exp(−2𝜆𝐻𝑖)𝐴𝑖  𝑖 = 3, . . . , 𝑛– 1                                                                               (A-9) 

where 

𝑃𝑖,𝑖+1 =
𝑊(𝑖+1)−𝜌𝑖

𝜌𝑖+𝑊
(𝑖+1)                                                                                                                        (A-10) 

𝑊𝑖 = 𝜌𝑖
𝑊(𝑖+1)+𝜌𝑖tanh(𝜆ℎ𝑖)

𝜌𝑖+𝑊
(𝑖+1)tanh(𝜆ℎ𝑖)

                 𝑊𝑛 = 𝜌𝑛                 𝑓𝑜𝑟𝑖 = 1, . . . , 𝑛– 1                      (A-11) 

where an n-layer medium is discretized into the resistivities 𝜌1, 𝜌2, … , 𝜌𝑛 and the layer thicknesses 

ℎ1, ℎ2, … , ℎ𝑛−1. 𝐻𝑖 is the depth of the bottom of the 𝑖𝑡ℎ layer and assumes the nth layer to extend to 

infinity, i.e. ℎ𝑛 = ∞ and  𝐻𝑛 = ∞. 
 


