- سایت رسمی بورس اوراق بهادار تهران http://www.irbourse.com/
- مفتخر دریایینژاد، کبری و کشاورز حداد، غلامرضا (1391). اثر سرایت بازده و تلاطم در برآورد ارزش در معرض ریسک سبد دارایی متشکل از طلا، ارز و سهام. پایاننامة کارشناسی ارشد، دانشکدة مدیریت و اقتصاد دانشگاه صنعتی شریف.
- Aloui, A., Ben Aıssa, M.S., Nguyen, D.K., (2011). Global financial crisis, extreme interdependences, and contagion effects: the role of economic structure? Journal of Banking and Finance 35 (1), 130–141.
- Ang, A. and Bekaert, G. (2002). International asset allocation with regime shifts, Review of Financial Studies, 15 (4), 1137–1187.
- Ang, A., Chen, J., and Xing, Y. (2006). Downside risk, Review of Financial Studies, 19 (4), 1191–1239.
- Boubaker, H. and Sghaier, N. (2013). Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach, Journal of Banking and Finance, 37 (2), 361-377.
- Canela, M.A. and Collazo, E.P. (2006). Modelling dependence in latin american markets using copula functions, Working paper, Universitat de Barcelona.
- Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copulas methods in Finance J. Wiley.
- Chollete, L., de la Pena, V., Lu, C-C., (2011). International diversification: a copula approach. Journal of Banking and Finance 35 (2), 403–417.
- Clayton, D.G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65 (1), 141–151.
- Costinot, A. and, Thierry, R and Teiletche, J.(2000). Revisiting the Dependence between Financial Markets with Copulas, Working paper.
- Das, S.R. and Uppal, R. (2004). Systemic risk and international portfolio choice, Journal ofFinance, 59 (6), 2809–2834.
- de Melo Mendes, B.V., Kolev, N., (2008). How long memory in volatility affects true dependence structure. International Review of Financial Analysis 17 (5), 1070– 1086.
- Di Clemente. A. and Romano, C. (2004). Measuring and optimizing portfolio credit risk: acopula-based approach, Economic Notes, 33 (3), 325–357.
- Dias, A. and Embrechts, P.(2003). Dynamiccopulamodelsformultivariatehigh-frequency data in finance, Working Paper, ETH Zurich: Department of Mathematics.
- Embrechts, P., McNeil, A.J. and Straumann, D. (1999). “Correlation: pitfalls and alternatives a short, RISK Magazine, 69–71.
- Embrechts, P., McNeil, A.J. and Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls, In: Dempster, M.A.H. (Ed.), RiskManagement: Value at Risk and Beyond, Cambridge University Press, Cambridge.
- Engle, R.F. (2002). Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models, Journal ofBusiness and Economic Statistics, 20 (3), 339–350
- Engle, R.F., (1982). Auto-regressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 (4), 987_1007.
- Fantazzini, D. (2008). Copula’s conditional dependence measures for portfoliomanagement and Value at Risk, Working paper, SFB 649, University of Konstanz (Germany): Chair of Economics and Econometrics.
- Garcia, R., Tsafack, G., (2011). Dependence structure and extreme comovements in international equity and bond markets. Journal of Banking and Finance 35 (8), 1954–1970.
- Giacomini, E. and Hardle, W. (2005). Value-at-Risk calculations with time varying copulae, Discussion paper, Humboldt University of Berlin: Institute Statistics and Econometrics.
- Glosten, L.R., R. Jagannathan and D. Runkle (1993), On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks, Journal of Finance, 48, 1779-1801.
- Hartmann, P., Straetmans, S. and de Vries, C.G. (2004). Asset market linkages in crisis periods, Review of Economics and Statistics, 86 (1), 313–326.
- He, X. and Gong, P. (2009). Measuring the coupled risks: a copula-based CVaR model, Journal of Computational and Applied Mathematics, 223 (2), 1066–1080.
- Hotta, L.K. and Palaro, H.P. (2006). Using conditional copula to estimate Value at Risk, Journal of Data Science, 4 (1), 93-115.
- Hotta, L.K., Lucas, E.C. and Palaro, H.P. (2008). Estimation of VaR using copula and extreme value theory, Multinational Financial Journal, 12 (3/4), 205-218.
- Hu, L., (2006). Dependence patterns across financial markets: a mixed copula approach. Applied Financial Economics 16 (10), 717–729.
- Hung, J.J., Kuo, L., Liang, H. and Lin, W.F. (2009). Estimating value at risk of portfolio by conditional copula-GARCH method, Insurance: Mathematics and Economics, 45 (2009) 315_324
- Hurlimann, W. (2004). Fitting bivariate cumulative returns with copulas, Computational Statistics & Data Analysis, 45 (2), 355-372.
- Ignatievay, K., Platen, E., (2010). Modelling co-movements and tail dependency in the international stock market via copulae. Asia-Pacific Financial Markets 17 (3), 261–302.
- Jondeau, E., Rockinger, M., (2003). Conditional volatility, skewness and kurtosis: existence, persistence, and comovements. Journal of Economic Dynamics and Control 27 (10), 1699–1737.
- Kole, E., Koedijk, K., Verbeek, M., (2005). Testing Copulas to Model Financial Dependence. Working paper, RSM Erasmus University
- Martinelli, L. and Meyfredi, J.C. (2007). A copula approach to Value-at-Risk estimation for fixed-income portfolios, The Journal of fixed income, summer, 17, 1.
- McNeil, A.J., Frey, R., and Embrechts, P. (2005). Quantitative Risk Management: Concepts, techniques and tools, Princeton University Press, New Jersey.
- Micocci, M., and masala.G, )2005). Pricing pension funds guarantees using a copula approach. Available online at www. ctuaries.org/AFIR/colloguia/Maastricht/Micocci_Masala.pdf
- Necula, C. (2010). Modeling the dependency structure of stock index returns using a copula function approach, Romanian Journal of Economic Forecasting, 13 (3).
- Nelsen, R., (1999). An Introduction to Copulas. Springer, New York.
- Ozun, A. and Cifter, A. (2007). Portfolio value-at-risk with time-varying copula: Evidence from the Americans, Marmara University, MPRA Paper, No. 2711.
- Palaro, H.P. and Hotta, L.K. (2006). Using conditional copula to estimate Value at Risk, Journal of Data Science, 4 (2006), 93-115.
- Patton, A. (2004). On the out-of-sample importance of skewness and asymmetric dependence for asset allocation, Journal of Financial Econometrics, 2 (1), 130–168.
- Poon, S-H., Rockinger, M. and Tawn, J. (2004). Modeling extreme-value dependence in international stock markets, Statistica Sinica, 13, 929–953.
- Rockinger, M., Jondeau, E., (2001). Conditional dependency of financial series: An application of copulas. Working paper NER # 82. Banque de France. Paris.
- Rodriguez, J.C., (2007). Measuring financial contagion: a copula approach. Journal of Empirical Finance 14 (3), 401–423.
- Sklar, A., (1959). Fonctions de repartition a n dimensions et leurs marges. Publications de l'Institut Statistique de l'Universite de Paris 8, pp. 229_231.
- Song, P. X.-K.(2000) ,Multivariate dispersion models generated from gaussian copula. Scandinavian Journal of Statistics, 27(2):305–320
- Sun, W., Rachev, S., Fabozzi, F.J., Kalev, P., (2009). A new approach to modeling comovement of international equity markets: evidence of unconditional copulabased simulation of tail dependence. Empirical Economics 36 (1), 201–229.
- Susmel, R. (2001). Extreme observations and diversification in Latin American emerging equity markets, Journal of International Money and Finance, 20 (7), 971–986.
- Tsafack, G. (2009). Asymmetric dependence implications for extreme risk management, Journal of Derivatives, 17 (1), 7–20.
- Wang, K., Chen, Y.H., and Huang, S.W. (2011). The dynamic dependence between the Chinese market and other international stock markets: A time-varying copula approach, International Review of Economics and Finance, 20 (4), 654-664.
- Wang, Y.C., Wu, J.L., and Lai, Y.H. (2013). A revisit to the dependence structure between the stock and foreign exchange markets: A dependence-switching copula approach, Journal of Banking and Finance, 37 (5), 1706-1719.
|