
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,233,577 |
تعداد دریافت فایل اصل مقاله | 102,067,965 |
فیلوژنی مولکولی و واگرایی عملکردی یوریدین دی فسفات گلیکوزیل ترانسفرازهای (UGT) موجود در جنس زعفران و همولوگهای آن در سایر گیاهان | ||
علوم باغبانی ایران | ||
دوره 55، شماره 3، مهر 1403، صفحه 439-456 اصل مقاله (2.1 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.368681.2135 | ||
نویسندگان | ||
مریم فلاح؛ روحانگیز نادری؛ سید علیرضا سلامی* | ||
گروه علوم باغبانی و مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
زعفران زراعی با نام علمی Crocus sativus L. یکی از منابع غنی از آپوکاروتنوئیدها شامل کروسین، پیکروکروسین و سافرانال است. آپوکاروتنوئیدها از شکست اکسیداتیو کاروتنوئیدها حاصل میگردند. گلیکوزیلاسیون مرحله نهایی و بسیار مهم در فرآیند بیوسنتز کروسین است زیرا به رنگدانه خصوصیت حلالیت در آب میبخشد و خواص شیمیایی و زیست فعالی آن مولکول را تغییر میدهد. در این مطالعه، توالی پروتئینی UGTهای موجود در زعفران، همراه با همولوگهای آنها در سایر گیاهان از دیدگاههای مختلف شامل آنالیز فیلوژنی و شناسایی موتیف، آنالیز واگرایی عملکردی و آنالیز ساختاری مورد بررسی قرار گرفت. تمرکز مطالعه روی UGTهایی بود که مسئول گلیکوزیلاسیون اولیه و ثانویه در تولید کروسین در گیاهانی که کروسین در آنها یافت شد، هستند. همچنین، رابطه تکاملی خانواده پروتئین UGT در زعفران و گیاهان دیگر شامل واگرایی عملکردی نوع یک و نوع دو مورد بررسی قرار گرفت. آنالیز فیلوژنی نشان داد که UGTهایی که گلیکوزیلاسیون اولیه را برعهده دارند با UGTهایی که گلیکوزیلاسیون ثانویه را انجام می دهند در دو گروه کاملا جداگانه با بیشترین تفاوت عملکردی قرار گرفتند.. در هر گروه موتیفهایی یافت شد که اختصاصی همان گروه بودند و در این موتیفهای اختصاصی، اسید آمینههایی با ضریب واگرایی عملکردی بالا شناسایی شد که می توان این واحدها را به تفاوت عملکردی این توالیها نسبت داد. این یافتهها ممکن است تحقیقات آینده را با هدف مشخص کردن عملکرد این ژنها تسهیل کند. | ||
کلیدواژهها | ||
شناسایی موتیف؛ فیلوژنی پروتئین؛ گلیکوزیل ترانسفراز؛ UGTs | ||
مراجع | ||
Abhiman, S., Daub, C. O., & Sonnhammer, E. L. L. (2006). Prediction of function divergence in protein families using the substitution rate variation parameter alpha. Molecular Biology and Evolution, 23(7), 1406–1413. https://doi.org/10.1093/molbev/msl002. Ahmed, A., Peters, N. R., Fitzgerald, M. K., Watson, J. A., Hoffmann, F. M., & Thorson, J. S. (2006). Colchicine glycorandomization influences cytotoxicity and mechanism of action. Journal of the American Chemical Society, 128(44), 14224–14225. https://doi.org/10.1021/ja064686s. Ahrazem, O., Diretto, G., Argandoña, J., Rubio-Moraga, Á., Julve, J. M., Orzáez, D., Granell, A., & Gómez-Gómez, L. (2017). Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. Journal of Experimental Botany, 68(16), 4663–4677. https://doi.org/10.1093/jxb/erx277. Ahrazem, O., Rubio-Moraga, A., Mozos, A. T., & Gómez-Gómez, M. L. (2014). Genomic organization of a UDP-glucosyltransferase gene determines differential accumulation of specific flavonoid glucosides in tepals. Plant Cell, Tissue and Organ Culture (PCTOC), 119, 227–245. https://doi.org/10.1007/s11240-014-0528-y. Ahrazem, O., Rubio-Moraga, A., Trapero-Mozos, A., Climent, M. F. L., Gómez-Cadenas, A., & Gómez-Gómez, L. (2015). Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. Plant Science, 234, 60–73. https://doi.org/10.1016/j.plantsci.2015.02.004. Arnau, V., Gallach, M., Lucas, J. I., & Marín, I. (2006). UVPAR: fast detection of functional shifts in duplicate genes. BMC Bioinformatics, 7(1), 1–12. https://doi.org/10.1186/1471-2105-7-174. Bharatham, K., Zhang, Z. H., & Mihalek, I. (2011). Determinants, discriminants, conserved residues-a heuristic approach to detection of functional divergence in protein families. PLoS One, 6(9), e24382. https://doi.org/10.1371/journal.pone.0024382. Breton, C., Fournel-Gigleux, S., & Palcic, M. M. (2012). Recent structures, evolution and mechanisms of glycosyltransferases. Current Opinion in Structural Biology, 22(5), 540–549. https://doi.org/10.1016/j.sbi.2012.06.007. Breton, C., & Imberty, A. (1999). Structure/function studies of glycosyltransferases. Current Opinion in Structural Biology, 9(5), 563–571. https://doi.org/10.1016/S0959-440X(99)00006-8. Caballero-Ortega, H., Pereda-Miranda, R., & Abdullaev, F. I. (2007). HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chemistry, 100(3), 1126–1131. https://doi.org/10.1016/j.foodchem.2005.11.020. Chagoyen, M., García-Martín, J. A., & Pazos, F. (2016). Practical analysis of specificity-determining residues in protein families. Briefings in Bioinformatics, 17(2), 255–261. https://doi.org/10.1093/bib/bbv045. Christodoulou, E., Kadoglou, N. P. E., Kostomitsopoulos, N., & Valsami, G. (2015). Saffron: a natural product with potential pharmaceutical applications. Journal of Pharmacy and Pharmacology, 67(12), 1634–1649. https://doi.org/10.1111/jphp.12456. del Sol Mesa, A., Pazos, F., & Valencia, A. (2003). Automatic methods for predicting functionally important residues. Journal of Molecular Biology, 326(4), 1289–1302. https://doi.org/10.1016/S0022-2836(02)01451-1. Demurtas, O. C., Frusciante, S., Ferrante, P., Diretto, G., Azad, N. H., Pietrella, M., Aprea, G., Taddei, A. R., Romano, E., & Mi, J. (2018). Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments. Plant Physiology, 177(3), 990–1006. https://doi.org/10.1104/pp.17.01815. Diretto, G., Ahrazem, O., Rubio‐Moraga, Á., Fiore, A., Sevi, F., Argandoña, J., & Gómez‐Gómez, L. (2019). UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus). New Phytologist, 224(2), 725–740. https://doi.org/10.1111/nph.16079. Gu, X. (2003). Functional divergence in protein (family) sequence evolution. Origin and Evolution of New Gene Functions, 133–141. https://doi.org/10.1007/978-94-010-0229-5_4 Gu, X. (2006). A simple statistical method for estimating type-II (cluster-specific) functional divergence of protein sequences. Molecular Biology and Evolution, 23(10), 1937–1945. https://doi.org/10.1093/molbev/msl056. Gu, X., Zou, Y., Su, Z., Huang, W., Zhou, Z., Arendsee, Z., & Zeng, Y. (2013). An update of DIVERGE software for functional divergence analysis of protein family. Molecular Biology and Evolution, 30(7), 1713–1719. https://doi.org/10.1093/molbev/mst069. Holm, L., Laiho, A., Törönen, P., & Salgado, M. (2023). DALI shines a light on remote homologs: One hundred discoveries. Protein Science, 32(1), e4519. https://doi.org/10.1002/pro.4519. Illergård, K., Ardell, D. H., & Elofsson, A. (2009). Structure is three to ten times more conserved than sequence—a study of structural response in protein cores. Proteins: Structure, Function, and Bioinformatics, 77(3), 499–508. https://doi.org/10.1002/prot.22458. Lai, C., Yang, N., Yusuyin, M., Zhang, D., Yang, Y., Li, C., & Xu, H. (2022). Characterization of a novel crocetin glycosyltransferase UGTCs4 involved in two steps of glycosylation in crocin biosynthesis from crocus cultured cell. Le Roy, J., Huss, B., Creach, A., Hawkins, S., & Neutelings, G. (2016). Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 7, 735. https://doi.org/10.3389/fpls.2016.00735. Li, L., Shakhnovich, E. I., & Mirny, L. A. (2003). Amino acids determining enzyme-substrate specificity in prokaryotic and eukaryotic protein kinases. Proceedings of the National Academy of Sciences, 100(8), 4463–4468. https://doi.org/10.1073/pnas.0737647100. Liang, Z., Yang, M., Xu, X., Xie, Z., Huang, J., Li, X., & Yang, D. (2014). Isolation and purification of geniposide, crocin-1, and geniposidic acid from the fruit of Gardenia jasminoides Ellis by high-speed counter-current chromatography. Separation Science and Technology, 49(9), 1427–1433. https://doi.org/10.1080/01496395.2013.879179. Lim, E., & Bowles, D. J. (2004). A class of plant glycosyltransferases involved in cellular homeostasis. The EMBO Journal, 23(15), 2915–2922. https://doi.org/10.1038/sj.emboj.7600295. López-Jimenez, A. J., Frusciante, S., Niza, E., Ahrazem, O., Rubio-Moraga, Á., Diretto, G., & Gómez-Gómez, L. (2021). A new glycosyltransferase enzyme from family 91, UGT91P3, is responsible for the final glucosylation step of crocins in saffron (Crocus sativus l.). International Journal of Molecular Sciences, 22(16), 8815. https://doi.org/10.3390/ijms22168815. Mandai, T., Yoneyama, M., Sakai, S., Muto, N., & Yamamoto, I. (1992). The crystal structure and physicochemical properties of L-ascorbic acid 2-glucoside. Carbohydrate Research, 232(2), 197–205. https://doi.org/10.1016/0008-6215(92)80054-5. Meng, L., Liu, X., He, C., Xu, B., Li, Y., & Hu, Y. (2020). Functional divergence and adaptive selection of KNOX gene family in plants. Open Life Sciences, 15(1), 346–363. https://doi.org/10.1515/biol-2020-0036. Mirny, L. A., & Gelfand, M. S. (2002). Using orthologous and paralogous proteins to identify specificity-determining residues in bacterial transcription factors. Journal of Molecular Biology, 321(1), 7–20. https://doi.org/10.1016/S0022-2836(02)00587-9. Modolo, L. V, Blount, J. W., Achnine, L., Naoumkina, M. A., Wang, X., & Dixon, R. A. (2007). A functional genomics approach to (iso) flavonoid glycosylation in the model legume Medicago truncatula. Plant Molecular Biology, 64, 499–518. https://doi.org/10.1007/s11103-007-9167-6. Moraga, Á. R., Mozos, A. T., Ahrazem, O., & Gómez-Gómez, L. (2009). Cloning and characterization of a glucosyltransferase from Crocus sativusstigmas involved in flavonoid glucosylation. BMC Plant Biology, 9(1), 1–16. https://doi.org/10.1186/1471-2229-9-109. Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., & Mizukami, H. (2012). UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS Letters, 586(7), 1055–1061. https://doi.org/10.1016/j.febslet.2012.03.003. Naylor, G. J. P., & Gerstein, M. (2000). Measuring shifts in function and evolutionary opportunity using variability profiles: a case study of the globins. Journal of Molecular Evolution, 51, 223–233. https://doi.org/10.1007/s002390010084. Nguyen Ba, A. N., Strome, B., Hua, J. J., Desmond, J., Gagnon-Arsenault, I., Weiss, E. L., Landry, C. R., & Moses, A. M. (2014). Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences. PLoS Computational Biology, 10(12), e1003977. https://doi.org/10.1371/journal.pcbi.1003977. Offen, W., Martinez‐Fleites, C., Yang, M., Kiat‐Lim, E., Davis, B. G., Tarling, C. A., Ford, C. M., Bowles, D. J., & Davies, G. J. (2006). Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. The EMBO Journal, 25(6), 1396–1405. https://doi.org/10.1016/j.febslet.2012.03.003. Ohno, S. (2013). Evolution by gene duplication. Springer Science & Business Media. Pennisi, E. (2021). Protein structure prediction now easier, faster. American Association for the Advancement of Science. doi: 10.1126/science.373.6552.262. Pfister, S., Meyer, P., Steck, A., & Pfander, H. (1996). Isolation and structure elucidation of carotenoid− glycosyl esters in gardenia fruits (gardenia jasminoides ellis) and saffron (crocus sativus linne). Journal of Agricultural and Food Chemistry, 44(9), 2612–2615. https://doi.org/10.1021/jf950713e. Pu, X., He, C., Yang, Y., Wang, W., Hu, K., Xu, Z., & Song, J. (2020). In vivo production of five crocins in the engineered Escherichia coli. ACS Synthetic Biology, 9(5), 1160–1168. https://doi.org/10.1021/acssynbio.0c00039. Rahimi, S., Kim, J., Mijakovic, I., Jung, K.-H., Choi, G., Kim, S.-C., & Kim, Y.-J. (2019). Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnology Advances, 37(7), 107394. https://doi.org/10.1016/j.biotechadv.2019.04.016. Swint-Kruse, L. (2016). Using evolution to guide protein engineering: the devil is in the details. Biophysical Journal, 111(1), 10–18. http://dx.doi.org/10.1016/j.bpj.2016.05.030. Trapero, A., Ahrazem, O., Rubio-Moraga, A., Jimeno, M. L., Gómez, M. D., & Gómez-Gómez, L. (2012). Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus. Plant Physiology, 159(4), 1335–1354. https://doi.org/10.1104/pp.112.198069. Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., Bridgland, A., Cowie, A., Meyer, C., & Laydon, A. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590–596. https://doi.org/10.1038/s41586-021-03828-1. Umesono, K., & Evans, R. M. (1989). Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell, 57(7), 1139–1146. Verma, V. V., Gupta, R., & Goel, M. (2015). Phylogenetic and evolutionary analysis of functional divergence among Gamma glutamyl transpeptidase (GGT) subfamilies. Biology Direct, 10(1), 1–21. https://doi.org/10.1186/s13062-015-0080-7. Vogt, T., & Jones, P. (2000). Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends in Plant Science, 5(9), 380–386. Wang, M., Ji, Q., Lai, B., Liu, Y., & Mei, K. (2023). Structure-function and engineering of plant UDP-glycosyltransferase. Computational and Structural Biotechnology Journal. https://doi.org/10.1016/j.csbj.2023.10.046. Wang, X. (2009). Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Letters, 583(20), 3303–3309. https://doi.org/10.1016/j.febslet.2009.09.042. Weymouth-Wilson, A. C. (1997). The role of carbohydrates in biologically active natural products. Natural Product Reports, 14(2), 99–110. Winterhalter, P., & Rouseff, R. L. (2001). Carotenoid-derived aroma compounds. ACS Publications. Xi, L., & Qian, Z. (2006). Pharmacological properties of crocetin and crocin (digentiobiosyl ester of crocetin) from saffron. Natural Product Communications, 1(1), 1934578X0600100112. https://doi.org/10.1177/1934578X0600100 Zhang, C., Griffith, B. R., Fu, Q., Albermann, C., Fu, X., Lee, I.-K., Li, L., & Thorson, J. S. (2006). Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science, 313(5791), 1291–1294. doi: 10.1126/science.113002. | ||
آمار تعداد مشاهده مقاله: 111 تعداد دریافت فایل اصل مقاله: 121 |