تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,031 |
تعداد مشاهده مقاله | 125,501,156 |
تعداد دریافت فایل اصل مقاله | 98,764,470 |
طراحی مدل ریاضی چندهدفه استوار مبتنی بر پایداری برای مسیریابی وسایل نقلیه جمعآوری پسماند شهری | ||
مدیریت صنعتی | ||
دوره 15، شماره 4، 1402، صفحه 680-709 اصل مقاله (1.19 M) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/imj.2023.350291.1007997 | ||
نویسندگان | ||
افروز رحماندوست1؛ اشکان حافظ الکتب* 2؛ بیژن رحمانی پرچیکلایی3؛ امیر عزیزی4 | ||
1دانشجوی دکتری، گروه مهندسی صنایع، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران. | ||
2دانشیار، گروه مهندسی صنایع، واحد تهران جنوب، دانشگاه آزاد اسلامی تهران، ایران. | ||
3دانشیار، گروه ریاضی، واحد نور، دانشگاه آزاد اسلامی، نور، ایران. | ||
4استادیار، گروه مهندسی صنایع، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. | ||
چکیده | ||
هدف: موضوع جمعآوری پسماند، یکی از چالشهای بزرگ جوامع مدرن است. از آنجا که تولید پسماند در هر زمان اجتنابناپذیر است، توجه به ساماندهی جمعآوری پسماند شهری، امری بسیار مهم و ضروری است. این در حالی است که با توجه به افزایش تولید آلایندههای زیستمحیطی در دهههای اخیر و بروز بحرانهای ناشی از گرم شدن زمین، پرداختن به مسائل پایداری بیش از پیش در دستور کار دولتها قرار گرفته است. این پژوهش با هدف طراحی یک شبکه جمعآوری پسماند شهری با رویکرد پایداری شهری اجرا شده است. برای این منظور، یک مدل ریاضی چندهدفه پیشنهاد شده که نگرانیهای اقتصادی، اجتماعی و زیستمحیطی مربوط به مسیریابی وسایل نقلیه جمعآوری پسماند شهری را در نظر گرفته است. روش: در این پژوهش با هدف طراحی یک شبکه بهینه برای جمعآوری پسماند شهری، یک مدل ریاضی چندهدفه عدد صحیح مبتنی بر مؤلفههای پایداری، برای مسئله مسیریابی وسایل نقلیه جمعآوری پسماند شهری ارائه شده است. برای حل مدل، از دادههای واقعی مربوط به جمعآوری پسماند در شهر ساوه استفاده شد. بهکمک نرمافزار گمز، مدل در ابعاد کوچک و بهکمک نرمافزار متلب، مدل در ابعاد بزرگ حل شد. در مدل پیشنهادی از رویکرد استوار برای برخورد باعدم قطعیت استفاده شد. برای حل مدل در ابعاد بزرگ از الگوریتمهای فراابتکاری چندهدفه استفاده شد. درنهایت بین روشهای حل بر اساس مقدار تابع هدف و زمان حل، مقایسهای انجام گرفت. یافتهها: هدف اقتصادی پژوهش، محاسبه مجموع هزینههای حمل پسماندها از نقاط جمعآوری به مراکز پردازش و مراکز بازیافت زباله و نیز هزینههای مربوط به بازیافت پسماندهاست. هدف زیستمحیطی پژوهش، کاهش آلودگی ناشی از حمل پسماندهای جمعآوری شده است و در نهایت، هدف اجتماعی آن، به حداکثررساندن رضایت شهروندان از جمعآوری پسماند شهری است. در این پژوهش نشان دادیم که مدل ریاضی پیشنهادی، بین هزینههای انجام شده، حجم پسماند جمعآوری شده، مسافت پیموده شده و میزان آلودگی تولید شده از حملونقل پسماندها، تناسب منطقی برقرار میکند. نتیجهگیری: مدل ارائه شده در این پژوهش با در نظر گرفتن ابعاد پایداری در جمعآوری شدن پسماند شهری با ارائه توابع هدف مجزا، موجب بهینهشدن سیستم جمعآوری پسماند شهری شد. نتایج نشان داد که در بُعد اقتصادی، هزینههای جمعآوری پسماند که بیشترین سهم از هزینه کل مدیریت پسماند را به خود اختصاص میدهد، کاهش چشمگیری یافته است. دلیل کاهش هزینه جمعآوری، بهینهکردن مسیرهای جمعآوری و کاهش هزینههای مربوط به بازیافت پسماند جمعآوری شده بود. همچنین در بُعد اجتماعی با درنظر گرفتن حجم پسماند جمعآوری شده نسبت به پسماند تولید شده، میزان رضایت شهروندان محاسبه شد. درنهایت نتایج نشان داد که با کاهش اثرهای زیستمحیطی مربوط به بازیافت و حملونقل پسماند جمعآوری شده، مدل پیشنهادی عملکرد خوبی داشته است. | ||
کلیدواژهها | ||
پایداری؛ پسماند شهری؛ جمعآوری؛ مسیریابی؛ عدم قطعیت | ||
مراجع | ||
اسلام پناه، آرش؛ جعفر نژاد، احمد؛ حیدری دهویی، جلیل؛ تقیزاده یزدی، محمدرضا (1402). طراحی شبکه زنجیره تأمین معکوس پسماندهای صنعتی با بهکارگیری سیستم بین خودرویی هوشمند (VANET) مورد مطالعه: خودروسازی ایران. مدیریت صنعتی، 15(3)، 447- 477.
فرحی ولوکلایی، ابوالقاسم (1400). ارزیابی و اولویتبندی ریسک ایمنی در فرایند پردازش پسماند شهری در محیط فازی. مطالعات مهندسی صنایع و مدیریت تولید، 7 (18)، 73- 84.
References Abdelli, I.S., Abdelmalek, F., Djelloul, A., Mesghouni, K., Addou, A. (2016). GIS based approach for optimized collection of household waste in Mostaganem city (Western Algeria). Waste Management & Research, 34 (5), 417–426. Babaee Tirkolaee, E., Mahdavi, I., Seyyed Esfahani, M. M., (2018). A robust periodic capacitated arc routing problem for urban waste collection considering drivers and crew’s working time. Waste Management, 76, 138-146. Boskovic, G., Jovicic, N., Jovanovic, S., Simovic, V. (2016). Calculating the costs of waste collection: a methodological proposal. Waste Manage. Res., 34 (8), 775–783. Dai, C., Li, Y. P., Huang. G. H. (2011). A two-stage support-vector-regression optimization model for municipal solid waste management – A case study of Beijing, China, Journal of Environmental Management, 92(12), 3023-3037. Edalatpour, M. A., Mirzapour Al-e-hashem, S. M. J., Karimi, B., Bahli, B. (2018). Investigation on a novel sustainable model for waste management in megacities: A case study in Tehran municipality. Sustainable Cities and Society, 36, 286-301. Erkut, E., Karagiannidis, A., Perkoulidis, G., & Tjandra, S. A. (2008). A multicriteria facility location model for municipal solid waste management in North Greece. European Journal of Operational Research, 187, 1402–1421. Eslampanah, A., Jafarnezhad, A., Heidary, J. & Taghizadeh-Yazdi, M. (2023). Utilizing Vehicular Ad Hoc Networks (VANET) for the Design of an Industrial Waste Reverse Supply Chain: A Case Study in the Iranian Automotive Industry. Industrial Management Journal, 15(3), 447-477. (in Persian) Faccio, M., Persona, A., Zanin, G. (2011). Waste collection multi objective model with real time traceability data. Waste Management, 31 (12), 2391–2405. Fernández-Aracil, P., Ortuño-Padilla, A., Melgarejo-Moreno. J. (2018). Factors related to municipal costs of waste collection service in Spain. Journal of Cleaner Production, 17520, 553-560. Ferri, G. L., de Lorena Diniz Chaves, G., & Ribeiro, G. M. (2015). Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement. Waste Management, 40, 173–191. Garibay-Rodriguez, J., Laguna-Martinez, M. G., Rico-Ramirez, V., Botello-Alvarez. J. E. (2018). Optimal municipal solid waste energy recovery and management: A mathematical programming approach. Computers & Chemical Engineering, 1192, 39405. Habibi, F., Asadi, E., Sadjadi, S. J., & Barzinpour, F. (2017). A multi-objective robust optimization model for site-selection and capacity allocation of municipal solid waste facilities: A case study in Tehran. Journal of Cleaner Production, 166, 816–834. Ibáñez-Forés, V., Coutinho-Nóbrega, C., Bovea, M. D., Mello-Silva, C. de Júlia Lessa-Feitosa-Virgolino. (2018). Influence of implementing selective collection on municipal waste management systems in developing countries: A Brazilian case study, Resources, Conservation and Recycling, 134, 100-111. Inghels, D., Dullaert, W. & Vigo, D. (2016). A service network design model for multimodal municipal solid waste transport, European Journal of Operational Research, 254(1), 68-79. Jaunich, M.K., Levis, J.W., DeCarolis, J.F., Gaston, E.V., Barlaz, M.A., Bartelt-Hunt, S.L., Jones, E.G., Hauser, L., Jaikumar, R. (2016). Characterization of municipal solid waste collection operations. Resour. Conserv. Recycl., 114, 92–102. Li, Y., & Huang, G. (2010). An interval-based possibilistic programming method for waste management with cost minimization and environmental-impact abatement under uncertainty. Science of the total environment, 408(20), 4296-4308. Mello, V. M., Santos, D., Freitas, R., Yokoyama, L. & Cammarota, M. C. (2018). Energy generation in the treatment of effluent from washing of municipal solid waste collection trucks. Sustainable Energy Technologies and Assessments, 30, 105-113. Mirdar Harijani, A., Mansour, S., & Karimi, B. (2017b). Multi-period sustainable and integrated recycling network for municipal solid waste – A case study in Tehran. Journal of Cleaner Production, 151, 96–108. Mohammaditabar, D., Ghodsypour, SH. & Hafezalkotob, A. (2015). A game theoretical analysis in capacity-constrained supplier-selection and cooperation by considering the total supply chain inventory costs. International Journal of Production Economics, 181, 87-97. Nguyen, T.K., Nguyen, T.N.A., Nguyen, N.D., Dinh, T.H.V. (2017). Optimization of municipal solid waste transportation by integrating GIS analysis, equation based, and agent-based model. Waste Management, 59, 14–22. https://doi.org/ 10.1016/j.wasman.2016.10.048. Phillips, J., Mondal. M. K. (2014). Determining the sustainability of options for municipal solid waste disposal in Varanasi, India. Sustainable Cities and Society, 10, 11-21. Rahmanifar, G., Mohammadi, M., Sherafat, A., Hajiaghaei-Keshteli, M., Fusco, G., & Colombaroni, C. (2023). Heuristic approaches to address vehicle routing problem in the Iot-based waste management system. Expert Systems with Applications, 220, 119708. Richter, A., Ng, K.T.W., Pan, C., 2018. Effects of Percent Operating Expenditure on Canadian Non-hazardous Waste Diversion. Sustainable Cities and Society, 38, 420–428. https://doi.org/10.1016/j.scs.2018.01.026. Sanjeevi, V., Shahabudeen, P., 2016. Optimal routing for efficient municipal solid waste transportation by using ArcGIS application in Chennai. India. Waste Manage. Res. 34 (1), 11–21. https://doi.org/10.1177/0734242X15607430. Santibañez-Aguilar, J. E., Ponce-Ortega, J. M., González-Campos, J. B., Serna-González, M., El-Halwagi. M. (2013). Optimal planning for the sustainable utilization of municipal solid waste, Waste Management, 33(12), 2607-2622. Soltani, A., Sadiq, R., Hewage, K. (2017). The impacts of decision uncertainty on municipal solid waste management. Journal of Environmental Management, 19715, 305-315. Son, L.H., Louati, A., 2016. Modeling municipal solid waste collection: a generalized vehicle routing model with multiple transfer stations, gather sites and inhomogeneous vehicles in time windows. Waste Manage., 52, 34–49. Soukopová, J., Struk, M., Hřebíček. (2017). Population age structure and the cost of municipal waste collection. A case study from the Czech Republic, Journal of Environmental Management, 203, 655-663. Tavares, G., Zsigraiova, Z., Semiao, V. & Carvalho M. G. (2009). Optimisation of municipal solid waste collection routes for minimum fuel consumption using 3D GIS modelling. Waste Management, 29(3), 1176-1185. Tirkolaee, E. B., Goli, A., Gütmen, S., Weber, G. W., & Szwedzka, K. (2023). A novel model for sustainable waste collection arc routing problem: Pareto-based algorithms. Annals of Operations Research, 324(1-2), 189-214. Valizadeh, J., Mozafari, P., & Hafezalkotob, A. (2022). Municipal waste management and electrical energy generation from solid waste: a mathematical programming approach. Journal of Modelling in Management, 17(1), 309-340. Valizadeh, J., Sadeh, E., Amini, Z. & Hafezalkotob, A. (2020). Robust optimization model for sustainable supply chain for production and distribution of Polyethylene pipe, Journal of Modelling in Management, 15(4), 1613-1653. Valizadeh, J. (2020). A novel mathematical model for municipal waste collection and energy generation: Case study of Kermanshah city. Management of Environmental Quality, 31(5), 1437-1453. Xu, Y., Huang, G. H., Qin, X. S. & Cao, M. F. (2009). A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty. Resources, Conservation and Recycling, 53(6), 352-363. Yadav, V., Karmakar, S., Dikshit, A. K., Bhurjee A. K. (2018). Interval-valued facility location model: An appraisal of municipal solid waste management system. Journal of Cleaner Production, 17110, 250-263. Zhang, X., Huang, G. (2014). Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment. Journal of Environmental Management, 135, 11–18. Zsigraiova, Z., Semiao, V. & Beijoco, F. (2013). Operation costs and pollutant emissions reduction by definition of new collection scheduling and optimization of municipal solid waste collection routes using GIS. The case study of Barreiro, Portugal. Waste Manage., 33, 793–806. | ||
آمار تعداد مشاهده مقاله: 255 تعداد دریافت فایل اصل مقاله: 282 |