- Haes Alhelou, H., Hamedani-Golshan, M. E., Njenda, T. C., & Siano, P. (2019). A survey on power system blackout and cascading events: Research motivations and challenges. Energies, 12(4), 682. DOI: 10.3390/en12040682
- Li, M. J., Tse, C. K., Liu, D., & Zhang, X. (2023). Cascading Failure Propagation and Mitigation Strategies in Power Systems. IEEE Systems Journal. DOI: 10.1109/JSYST.2023.3248044
- Streimikiene, D., Balezentis, T., Alisauskaite-Seskiene, I., Stankuniene, G., & Simanaviciene, Z. (2019). A review of willingness to pay studies for climate change mitigation in the energy sector. Energies, 12(8), 1481. DOI: 10.3390/en12081481
- Das, H. S., Rahman, M. M., Li, S., & Tan, C. W. (2020). Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renewable and Sustainable Energy Reviews, 120, 109618. DOI: 10.1016/j.rser.2019.109618
- Ghaffarzadeh, N., & Faramarzi, H. (2022). Optimal Solar plant placement using holomorphic embedded power Flow Considering the clustering technique in uncertainty analysis. Journal of Solar Energy Research, 7(1), 997-1007. DOI: 10.22059/JSER.2022.330961.1221
- Aryan Nezhad, M. (2021). Economic Impacts of Long-Term Wind Speed Changes on Optimal Planning of a Hybrid Renewable Energy System (HRES). Journal of Solar Energy Research, 6(1), 656-663. DOI: 10.22059/JSER.2021.315440.1186
- Hassan, A. S., Othman, E. A., Bendary, F. M., & Ebrahim, M. A. (2020). Optimal integration of distributed generation resources in active distribution networks for techno-economic benefits. Energy Reports, 6, 3462-3471. DOI: 10.1016/j.egyr.2020.12.004
- Khasanov, M., Kamel, S., Halim Houssein, E., Rahmann, C., & Hashim, F. A. (2023). Optimal allocation strategy of photovoltaic-and wind turbine-based distributed generation units in radial distribution networks considering uncertainty. Neural Computing and Applications, 35(3), 2883-2908. DOI: 10.1007/s00521-022-07715-2
- Selim, A., Kamel, S., Mohamed, A. A., & Elattar, E. E. (2021). Optimal allocation of multiple types of distributed generations in radial distribution systems using a hybrid technique. Sustainability, 13(12), 6644. DOI: 10.3390/su13126644
- Ali, M. H., Kamel, S., Hassan, M. H., Tostado-Véliz, M., & Zawbaa, H. M. (2022). An improved wild horse optimization algorithm for reliability based optimal DG planning of radial distribution networks. Energy Reports, 8, 582-604. DOI: 10.1016/j.egyr.2021.12.023
- McIlwaine, N., Foley, A. M., Morrow, D. J., Al Kez, D., Zhang, C., Lu, X., & Best, R. J. (2021). A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems. Energy, 229, 120461. DOI: 10.1016/j.energy.2021.120461
- Worku, M. Y. (2022). Recent advances in energy storage systems for renewable source grid integration: a comprehensive review. Sustainability, 14(10), 5985. DOI: 10.3390/su14105985
- Venkateswaran, V. B., Saini, D. K., & Sharma, M. (2020). Approaches for optimal planning of energy storage units in distribution network and their impacts on system resiliency. CSEE Journal of power and energy systems, 6(4), 816-833. DOI: 10.17775/CSEEJPES.2019.01280
- Das, C. K., Bass, O., Mahmoud, T. S., Kothapalli, G., Mousavi, N., Habibi, D., & Masoum, M. A. (2019). Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks. Applied Energy, 252, 113468. DOI: 10.1016/j.apenergy.2019.113468
- Zheng, Y., Song, Y., Huang, A., & Hill, D. J. (2019). Hierarchical optimal allocation of battery energy storage systems for multiple services in distribution systems. IEEE Transactions on Sustainable Energy, 11(3), 1911-1921. DOI: 10.1109/TSTE.2019.2946371
- Lei, J., Gong, Q., Liu, J., Qiao, H., & Wang, B. (2019). Optimal allocation of a VRB energy storage system for wind power applications considering the dynamic efficiency and life of VRB in active distribution networks. IET Renewable Power Generation, 13(4), 563-571. DOI: 10.1049/iet-rpg.2018.5619
- Al-Ghussain, L., Samu, R., Taylan, O., & Fahrioglu, M. (2020). Sizing renewable energy systems with energy storage systems in microgrids for maximum cost-efficient utilization of renewable energy resources. Sustainable Cities and Society, 55, 102059. DOI: 10.1016/j.scs.2020.102059
- Kiptoo, M. K., Lotfy, M. E., Adewuyi, O. B., Conteh, A., Howlader, A. M., & Senjyu, T. (2020). Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies. Energy Conversion and Management, 215, 112917. DOI: 10.1016/j.enconman.2020.112917
- Salman, U. T., Al-Ismail, F. S., & Khalid, M. (2020). Optimal sizing of battery energy storage for grid-connected and isolated wind-penetrated microgrid. IEEE Access, 8, 91129-91138. DOI: 10.1109/ACCESS.2020.2992654
- Javed, M. S., Ma, T., Jurasz, J., Canales, F. A., Lin, S., Ahmed, S., & Zhang, Y. (2021). Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island. Renewable Energy, 164, 1376-1394. DOI: 10.1016/j.renene.2020.10.063
- Xie, C., Wang, D., Lai, C. S., Wu, R., Wu, X., & Lai, L. L. (2021). Optimal sizing of battery energy storage system in smart microgrid considering virtual energy storage system and high photovoltaic penetration. Journal of Cleaner Production, 281, 125308. DOI: 10.1016/j.jclepro.2020.125308
- Memon, S. A., Upadhyay, D. S., & Patel, R. N. (2021). Optimal configuration of solar and wind-based hybrid renewable energy system with and without energy storage including environmental and social criteria: A case study. Journal of Energy Storage, 44, 103446. DOI: 10.1016/j.est.2021.103446
- Janamala, V., & Reddy, D. S. (2021). Coyote optimization algorithm for optimal allocation of interline–Photovoltaic battery storage system in islanded electrical distribution network considering EV load penetration. Journal of Energy Storage, 41, 102981. DOI: 10.1016/j.est.2021.102981
- Janamala, V. (2022). Optimal siting of capacitors in distribution grids considering electric vehicle load growth using improved flower pollination algorithm. SJEE, 19(3), 329-349. DOI: 10.2298/SJEE2203329J
- Giridhar, M. S., Rani, K. R., Rani, P. S., & Janamala, V. (2022). Mayfly Algorithm for Optimal Integration of Hybrid Photovoltaic/Battery Energy Storage/D-STATCOM System for Islanding Operation. International Journal of Intelligent Engineering & Systems, 15(3), 225-232. DOI: 10.22266/ijies2022.0630.19
- Inkollu, S. R., Anjaneyulu, G. V., NC, K., & CH, N. K. (2022). An Application of Hunter-Prey Optimization for Maximizing Photovoltaic Hosting Capacity Along with Multi-Objective Optimization in Radial Distribution Network. International Journal of Intelligent Engineering & Systems, 15(4), 575-584. DOI: 10.22266/ijies2022.0831.52
- Aryan Nezhad, M. (2022). Frequency control and power balancing in a hybrid renewable energy system (HRES): Effective tuning of PI controllers in the secondary control level. Journal of Solar Energy Research, 7(1), 963-970. DOI: 10.22059/JSER.2022.330109.1219
- Khasanov, M., Kamel, S., Rahmann, C., Hasanien, H. M., & Al‐Durra, A. (2021). Optimal distributed generation and battery energy storage units integration in distribution systems considering power generation uncertainty. IET Generation, Transmission & Distribution, 15(24), 3400-3422. DOI: 10.1049/gtd2.12230
- Adam, S. P., Alexandropoulos, S. A. N., Pardalos, P. M., & Vrahatis, M. N. (2019). No free lunch theorem: A review. Approximation and optimization: Algorithms, complexity and applications, 57-82. DOI: 10.1007/978-3-030-12767-1_5
- Kumar, A., Nadeem, M., & Banka, H. (2023). Nature inspired optimization algorithms: a comprehensive overview. Evolving Systems, 14(1), 141-156. DOI: 10.1007/s12530-022-09432-6
- Yapici, H., & Cetinkaya, N. (2019). A new meta-heuristic optimizer: Pathfinder algorithm. Applied soft computing, 78, 545-568. DOI: 10.1016/j.asoc.2019.03.012
- Janamala, V. (2021). A new meta-heuristic pathfinder algorithm for solving optimal allocation of solar photovoltaic system in multi-lateral distribution system for improving resilience. SN Applied Sciences, 3(1), 118. DOI: 10.1007/s42452-020-04044-8
- Dolatabadi, S. H., Ghorbanian, M., Siano, P., & Hatziargyriou, N. D. (2020). An enhanced IEEE 33 bus benchmark test system for distribution system studies. IEEE Transactions on Power Systems, 36(3), 2565-2572. DOI: 10.1109/TPWRS.2020.3038030
- Zimmerman, R. D., Murillo-Sánchez, C. E., & Thomas, R. J. (2010). MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Transactions on power systems, 26(1), 12-19. DOI: 10.1109/TPWRS.2010.2051168
- Pierezan, J., & Coelho, L. D. S. (2018, July). Coyote optimization algorithm: a new metaheuristic for global optimization problems. In 2018 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE. DOI: 10.1109/CEC.2018.8477769
- Zervoudakis, K., & Tsafarakis, S. (2020). A mayfly optimization algorithm. Computers & Industrial Engineering, 145, 106559. DOI: 10.1016/j.cie.2020.106559
- Naruei, I., Keynia, F., & Sabbagh Molahosseini, A. (2022). Hunter–prey optimization: Algorithm and applications. Soft Computing, 26(3), 1279-1314. DOI: 10.1007/s00500-021-06401-0
- Nguyen, T. T., Nguyen, T. T., Duong, L. T., & Truong, V. A. (2021). An effective method to solve the problem of electric distribution network reconfiguration considering distributed generations for energy loss reduction. Neural Computing and Applications, 33, 1625-1641. DOI: 10.1007/s00521-020-05092-2
|