- ابوالفتحی، خدیجه؛ علی خواه اصل، مرضیه و رضوانی، محمد. (1394). تیپ بندی و ارزیابی مراتع با استفاده از سامانهٔ اطلاعات جغرافیایی (GIS) و شاخص پوشش گیاهی (NDVI)(مطالعه موردی: تحت واحد شهرآباد زیر حوزه آبخیز حبله رود). فصلنامه انسان و محیطزیست، 13(2)، 45-55.
- خوانینزاده، علیرضا؛ سرباز، محمد و احمدیان، شادی. (1396). بررسی روند تغییرات فضای سبز در سه دهة گذشته با استفاده از سنجشازدور (مطالعه موردی: شهر یزد). جغرافیا و توسعه فضای شهری، 4(2)، 99-115.
- انصاری، حسین و داوری، کامران. (1389). ارزیابی تغییرات مکانی و زمانی خشکسالی با استفاده از شاخص پالمر (مطالعه موردی: حوزههای آبریز قره قوم و بخشی از حوزه اترک). پژوهشهای حفاظت آبوخاک (علوم کشاورزی و منابع طبیعی)، 17(2)، 125-140.
- فیروزی، فاطمه؛ طاووسی، تقی و محمودی، پیمان. (1397). بررسی روند تغییرات سریهای زمانی متغیرهای محیطی (NDVI، LST، Albedo و رطوبت خاک) دشت سیستان در شرق ایران. دانشگاه سیستان و بلوچستان، زاهدان.
- محمدیاری، فاطمه؛ پورخباز، حمیدرضا؛ توکلی، مرتضی و اقدر، حسین. (1393). تهیه نقشه پوشش گیاهی و پایش تغییرات آن با استفاده از تکنیکهای سنجشازدور و سیستم اطلاعات جغرافیایی (مطالعه موردی: شهرستان بهبهان). فصلنامه اطلاعات جغرافیایی «سپهر»، 23(92)، 23-34.
فرج زاده، منوچهر و کریمی، نعمتالله. (1392). مبانی هواشناسی ماهوارهای. چاپ اول، تهران: سازمان سمت.
- Alwesabi, M. (2012). MODIS NDVI satellite data for assessing drought in Somalia during the period 2000-2011. Student Thesis Series INES.
- Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., & Parsian, S. (2020). Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350.
- Azzari, G., & Lobell, D. B. (2017). Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sensing of Environment, 202, 64–74.
- Badapalli, P. K., Kottala, R. B., Madiga, R., & Mesa, R. (2021). Land suitability analysis and water resources for agriculture in semi-arid regions of Andhra Pradesh, South India using remote sensing and GIS techniques. International Journal of Energy and Water Resources, 7(4),1–16.
- Bahram, M., Põlme, S., Kõljalg, U., Zarre, S., & Tedersoo, L. (2012). Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytologist, 193(2), 465–473.
- Bullock, E. L., Woodcock, C. E., & Olofsson, P. (2020). Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sensing of Environment, 238, 110968.
- Chander, G., Markham, B. L,. & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903.
- Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., Dong, J., Qin, Y., Zhao, B., & Wu, Z. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104–120.
- Chu, H., Venevsky, S., Wu, C., & Wang, M. (2019). NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Science of the Total Environment, 650, 2051–2062.
- De Keersmaecker, W., Lhermitte, S., Tits, L., Honnay, O., Somers, B., & Coppin, P. (2015). A model quantifying global vegetation resistance and resilience to short‐term climate anomalies and their relationship with vegetation cover. Global Ecology and Biogeography, 24(5), 539–548.
- DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J. W., & Lang, M. W. (2020). Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sensing of Environment, 240, 111664.
- Goldblatt, R., Stuhlmacher, M. F., Tellman, B., Clinton, N., Hanson, G., Georgescu, M., Wang, C., Serrano-Candela, F., Khandelwal, A. K., & Cheng, W. H. (2018). Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment, 205, 253–275.
- Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B., Yang, J., & Zhang, W. (2020). Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment, 236, 111510.
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.
- Guha, S., Govil, H., Taloor, A. K., Gill, N., & Dey, A. (2022). Land surface temperature and spectral indices: A seasonal study of Raipur City. Geodesy and Geodynamics, 13(1), 72–82.
- Hao, B., Ma, M., Li, S., Li, Q., Hao, D., Huang, J., Ge, Z., Yang, H., & Han, X. (2019). Land use change and climate variation in the three gorges reservoir catchment from 2000 to 2015 based on the Google Earth Engine. Sensors, 19(9), 2118.
- Hossain, M. L., & Li, J. (2021). NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Global Ecology and Conservation, 30, e01768.
- Huang, Q., Long, D., Du, M., Zeng, C., Qiao, G., Li, X., Hou, A., & Hong, Y. (2018). Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River. Remote Sensing of Environment, 219, 115–134.
- Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index
- (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1–6.
- Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T. M., Bonin, C., Bruelheide, H., & De Luca, E. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526(7574), 574–577.
- Jahani, A., & Saffariha, M. (2021). Modeling of trees failure under windstorm in harvested Hyrcanian forests using machine learning techniques. Scientific Reports, 11(1), 1–13.
- Jones, H. G., & Vaughan, R. A. (2010). Remote sensing of vegetation: principles, techniques, and applications. edition 1.publisher: Oxford university press.
- Kakooei, M., & Baleghi, Y. (2020). A two-level fusion for building irregularity detection in post-disaster VHR oblique images. Earth Science Informatics, 13(2), 459–477.
- Krakauer, N. Y., Lakhankar, T., & Anadón, J. D. (2017). Mapping and attributing normalized difference vegetation index trends for Nepal. Remote Sensing, 9(10), 986.
- Kumar, B. P., Babu, K. R., Anusha, B. N., & Rajasekhar, M. (2022). Geo-environmental Monitoring and Assessment of Land Degradation and Desertification in the Semi-arid regions using Landsat 8 OLI/TIRS, LST, and NDVI approach. Environmental Challenges, 8, 100578.
- Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., Pei, F., & Wang, S. (2018). High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sensing of Environment, 209, 227–239.
- Lobell, D. B., Thau, D., Seifert, C., Engle, E., & Little, B. (2015). A scalable satellite-based crop yield mapper. Remote Sensing of Environment, 164, 324–333.
- Lu, Q., Zhao, D., Wu, S., Dai, E., & Gao, J. (2019). Using the NDVI to analyze trends and stability of grassland vegetation cover in Inner Mongolia. Theoretical and Applied Climatology, 135(3), 1629–1640.
- McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A. & Williams, D. G. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytologist, 178(4), 719–739.
- Midekisa, A., Holl, F., Savory, D. J., Andrade-Pacheco, R., Gething, P. W., Bennett, A., & Sturrock, H. J. W. (2017). Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PloS One, 12(9), e0184926.
- Mirmosavei, S., & Kareimei, H. (2013). Effect of drought on vegetation cover using MODIS sensing images case: Kurdistan Province. Geography and Development Iranian Journal, 11(31), 57–76.
- Mutanga, O., & Kumar, L. (2019). Google earth engine applications. In Remote Sensing, 11(5), 591- 611.
- Nila, M., Salma, U., Beierkuhnlein, C., Jaeschke, A., Hoffmann, S., & Hossain, M. L. (2019). Predicting the effectiveness of protected areas of Natura 2000 under climate change. Ecological Processes, 8(1), 1–21.
- Palmer, W. C. (1965). Meteorological drought (Vol. 30). US Department of Commerce, Weather Bureau.
- Park, T., Ganguly, S., Tømmervik, H., Euskirchen, E. S., Høgda, K.-A., Karlsen, S. R., Brovkin, V., Nemani, R. R., & Myneni, R. B. (2016). Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environmental Research Letters, 11(8), 84001.
- Pinzon, J. E., & Tucker, C. J. (2014). A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sensing, 6(8), 6929–6960.
- Poorazimy, M., Shataee, S., Attarchi, S., & Mohammadi, J. (2017). Estimation of aboveground biomass using Alos-Palsar data in Hyrcanian forests (Case study: ShastKalateh, Gorgan). Forest and Wood Products, 70(3), 479–488.
- Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science, 5, 17.
- Taloor, A. K., Manhas, D. S., & Kothyari, G. C. (2021). Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Applied Computing and Geosciences, 9, 100051.
- Teluguntla, P., Thenkabail, P. S., Oliphant, A., Xiong, J., Gumma, M. K., Congalton, R. G., Yadav, K., & Huete, A. (2018). A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 325–340.
- Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E., & Sanchez-Lorenzo, A. (2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16(10), 1–27.
- Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., & Revuelto, J. (2013). Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences, 110(1), 52–57.
- Wang, Y., Ma, J., Xiao, X., Wang, X., Dai, S., & Zhao, B. (2019). Long-term dynamic of Poyang Lake surface water: A mapping work based on the Google Earth Engine cloud platform. Remote Sensing, 11(3), 313.
- Weishou, S., Di, J., Hui, Z., Shouguang, Y., Haidong, L., & Naifeng, L. (2011). The response relation between climate change and NDVI over the Qinghai-Tibet plateau. Journal of the World Academy of Science,. Engineering and Technology, 59, 2216–2222.
- Xiao, J., & Moody, A. (2005). Geographical distribution of global greening trends and their climatic correlates: 1982–1998. International Journal of Remote Sensing, 26(11), 2371–2390.
- Yun-Hao, C., Xiao-Bing, L., & Feng, X. (2001). NDVI changes in China between 1989 and 1999 using change vector analysis based on time series data. Journal of Geographical Sciences, 11(4), 383–392.
- Zhang, Q., Kong, D., Singh, V. P., & Shi, P. (2017). Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications. Global and Planetary Change, 152, 1–11.
- Zhao, Q., Yu, L., Li, X., Peng, D., Zhang, Y., & Gong, P. (2021). Progress and trends in the application of Google Earth and Google Earth Engine. Remote Sensing, 13(18), 3778.
- Zhou, Y., Dong, J., Xiao, X., Liu, R., Zou, Z., Zhao, G., & Ge, Q. (2019). Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Science of the Total Environment, 689, 366–380.
- Zurqani, H. A., Post, C. J., Mikhailova, E. A., Schlautman, M. A., & Sharp, J. L. (2018). Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 69, 175–185.
|