تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,247 |
تعداد دریافت فایل اصل مقاله | 97,232,639 |
Sustainable and cost-effective production of glutamic acid by Corynebacterium glutamicum PTCC 1532 from waste bread using enzymatic hydrolysis and microbial fermentation | ||
Journal of Food and Bioprocess Engineering | ||
دوره 7، شماره 1، آبان 2024، صفحه 9-18 اصل مقاله (2.71 M) | ||
نوع مقاله: Original research | ||
شناسه دیجیتال (DOI): 10.22059/jfabe.2023.362657.1146 | ||
نویسندگان | ||
Amin Jafari Shad؛ Sayed Hadi Razavi* ؛ Faramarz Khodaiyan | ||
Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O. Box 4111, Karaj 31587-77871, Iran | ||
چکیده | ||
Food waste generation has increased in recent years due to population growth. The continuous rise in food production for human consumption has resulted in 1.3 billion tons of food waste annually worldwide. Waste bread, an inexpensive substrate with high carbohydrate content, can hydrolyze by proper methods, such as enzymatic hydrolysis, for utilization in fermentation. Glutamic acid, a non-essential amino acid with various applications in pharmaceuticals, food industries, and cosmetics, can be produced by fermentation. In this study, we applied waste bread, as a cost-effective starchy waste, to produce fermentable substances through enzymatic hydrolysis. This process resulted in a significant increase in reducing sugar concentration from 1.285 ± 0.195 g/L to 123.282 ± 0.924 g/L. The obtained hydrolysate was utilized as a carbonic source for the glutamic acid synthesis by Corynebacterium glutamicum PTCC 1532. To enhance the glutamic acid yield, response surface methodology was employed to optimize the independent variables. The optimum levels of reducing sugar concentration of hydrolysate, urea concentration, biotin concentration, and inoculum size was 49.889 g/L, 6.812 g/L, 6.57 μg/L, and 5.339% (v/v), respectively. Under these optimized conditions, the experimental glutamic acid production was 21.34 ± 0.204 g/L, which demonstrated a reasonable correlation between the predicted and experimental results. This study illustrated that waste bread can serve as a low-cost carbon source for producing valuable compounds such as glutamic acid. | ||
کلیدواژهها | ||
Waste bread؛ Glutamic acid؛ Corynebacterium glutamicum PTCC 1532؛ Enzymatic hydrolysis؛ Fermentation | ||
مراجع | ||
Abdenacer, M., Kahina, B. I., Aïcha, N., Nabil, N., Jean-Louis, G., & Joseph, B. (2012). Sequential optimization approach for enhanced production of glutamic acid from Corynebacterium glutamicum 2262 using date juice. Biotechnology and Bioprocess Engineering, 17(4), 795–803. https://doi.org/10.1007/s12257- 011-0486-8 AČANSKI, M., PASTOR, K., RAZMOVSKI, R., VUČUROVIĆ, V., & PSODOROV, Đ. (2014). Bioethanol production from waste bread samples made from mixtures of wheat and buckwheat flours. Journal on Processing and Energy in Agriculture, 18(1), 40–43. http://scindeks-clanci.ceon.rs/data/pdf/1821-4487/2014/1821- 44871401040A.pdf Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Almanaa, T. N., Innasimuthu, G. M., Rajoo, B., Alanzi, K. F., & Rajaram, S. K. (2019). Optimization of glutamic acid production by Corynebacterium glutamicum using response surface methodology. Journal of King Saud University - Science, 32(2), 1403–1408. https://doi.org/10.1016/j.jksus.2019.11.034 AOAC. (2019). Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International (21st Editi). Bashir, S., Bashir, R., Pervaiz, M., Adnan, A., Al-Qahtani, W. H., & Sillanpaa, M. (2022). RSM-Based Optimization of Fermentation Conditions and Kinetic Studies of Glutamic Acid and Lysine Production by Corynebacterium glutamicum. Journal of Nanomaterials, 2022. https://doi.org/10.1155/2022/3713456 Benabda, O., Kasmi, M., Kachouri, F., & Hamdi, M. (2018). Valorization of the powdered bread waste hydrolysate as growth medium for baker yeast. Food and Bioproducts Processing, 109, 1–8. https://doi.org/10.1016/j.fbp.2018.02.007 Benabda, O., M’Hir, S., Kasmi, M., Mnif, W., & Hamdi, M. (2019). Optimization of Protease and Amylase Production by Rhizopus oryzae Cultivated on Bread Waste Using Solid-State Fermentation. Journal of Chemistry, 2019. https://doi.org/10.1155/2019/3738181 Breig, S. J. M., & Luti, K. J. K. (2021). Response surface methodology: A review on its applications and challenges in microbial cultures. Materials Today: Proceedings, 42, 2277–2284. https://doi.org/10.1016/j.matpr.2020.12.316 D’Este, M., Alvarado-Morales, M., & Angelidaki, I. (2018). Amino acids production focusing on fermentation technologies – A review. Biotechnology Advances, 36(1), 14–25. https://doi.org/10.1016/j.biotechadv.2017.09.001 Das, K., Anis, M., Azemi, B. M. N. M., & Lsmail, N. (1995). Fermentation and Recovery of Glutamic Acid from Palm Waste Hydrolysate by Ion-Exchange Resin Column. Biotechnology and Bioengineering, 48(5), 551–555. https://doi.org/https://doi.org/10.1002/bit.260480519 Demirci, A. S., Palabiyik, I., Apaydın, D., Mirik, M., & Gumus, T. (2019). Xanthan gum biosynthesis using Xanthomonas isolates from waste bread: Process optimization and fermentation kinetics. Lwt, 101(October 2018), 40–47. https://doi.org/10.1016/j.lwt.2018.11.018 Ebrahimi, F., Khanahmadi, M., Roodpeyma, S., & Taherzadeh, M. J. (2008). Ethanol production from bread residues. Biomass and Bioenergy, 32(4), 333–337. https://doi.org/10.1016/j.biombioe.2007.10.007 Fahimitabar, A., Mohammad, S., Razavian, H., & Rezaei, S. A. (2021). Application of RSM for optimization of glutamic acid production by Corynebacterium glutamicum in bath culture. Heliyon, 7. https://doi.org/10.1016/j.heliyon.2021.e07359 Gadkari, S., Kumar, D., Qin, Z. hao, Ki Lin, C. S., & Kumar, V. (2021). Life cycle analysis of fermentative production of succinic acid from bread waste. Waste Management, 126, 861–871. https://doi.org/10.1016/j.wasman.2021.04.013 Ganguly, S. (2023). The pivotal role of Corynebacterium glutamicum in LGlutamic acid fermentation: A concise review. Biocatalysis and Agricultural Biotechnology, 47(July 2022). https://doi.org/10.1016/j.bcab.2022.102578 Ghazanfari, N., Fallah, S., Vasiee, A., & Tabatabaei Yazdi, F. (2023). Optimization of fermentation culture medium containing food waste for L-glutamate production using native lactic acid bacteria and comparison with industrial strain. LWT, 184, 114871. https://doi.org/10.1016/j.lwt.2023.114871 Han, W., Hu, Y., Li, S., Huang, J., Nie, Q., Zhao, H., & Tang, J. (2017). Simultaneous dark fermentative hydrogen and ethanol production from waste bread in a mixed packed tank reactor. Journal of Cleaner Production, 141, 608–611. https://doi.org/10.1016/j.jclepro.2016.09.143 Han, W., Lam, W. C., Melikoglu, M., Wong, M. T., Leung, H. T., Ng, C. L., Yan, P., Yeung, S. Y., & Lin, C. S. K. (2015). Kinetic Analysis of a Crude Enzyme Extract Produced via Solid State Fermentation of Bakery Waste. ACS Sustainable Chemistry and Engineering, 3(9), 2043–2048. https://doi.org/10.1021/acssuschemeng.5b00323 Han, X., Li, L., & Bao, J. (2019). Microbial extraction of biotin from lignocellulose biomass and its application on glutamic acid production. Bioresource Technology, 288(April). https://doi.org/10.1016/j.biortech.2019.121523 Haque, M. A., Kachrimanidou, V., Koutinas, A., & Lin, C. S. K. (2016). Valorization of bakery waste for biocolorant and enzyme production by Monascus purpureus. Journal of Biotechnology, 231, 55–64. https://doi.org/10.1016/j.jbiotec.2016.05.003 Haroon, S., Vinthan, A., Negron, L., Das, S., & Berenjian, A. (2016). Biotechnological approaches for production of high value compounds from bread waste. American Journal of Biochemistry and Biotechnology, 12(2), 102–109. https://doi.org/10.3844/ajbbsp.2016.102.109 Hirasawa, T., & Wachi, M. (2017). Glutamate fermentation-2: Mechanism of L-Glutamate overproduction in corynebacterium glutamicum. In Advances in Biochemical Engineering/Biotechnology (Vol. 159, pp. 57–72). Springer, Tokyo. https://doi.org/10.1007/10_2016_26 Hudečková, H., Šupinová, P., & Babák, L. (2017). Optimization of enzymatic hydrolysis of waste bread before fermentation. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65(1), 35– 40. https://doi.org/10.11118/actaun201765010035 Jin, C., Huang, Z., & Bao, J. (2020). High-Titer Glutamic Acid Production from Lignocellulose Using an Engineered Corynebacterium glutamicum with Simultaneous Co-utilization of Xylose and Glucose. ACS Sustainable Chemistry & Engineering, 8(16), 6315–6322. https://doi.org/10.1021/acssuschemeng.9b07839 Jyothi, A. N., Sasikiran, K., Nambisan, B., & Balagopalan, C. (2005). Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum. Process Biochemistry, 40(11), 3576–3579. https://doi.org/10.1016/j.procbio.2005.03.046 Khan, N. S., Mishra, I. M., Singh, R. P., & Prasad, B. (2005). Modeling the growth of Corynebacterium glutamicum under product inhibition in L-glutamic acid fermentation. Biochemical Engineering Journal, 25(2), 173–178. https://doi.org/10.1016/j.bej.2005.01.025 Jafari Shad et al. JFBE 7(1): 9-18,2024 18 Kumar, R. S., Moorthy, I. M. G., & Baskar, R. (2013). Modeling and optimization of glutamic acid production using mixed culture of corynebacterium glutamicum NCIM2168 and pseudomonas reptilivora NCIM2598. Preparative Biochemistry and Biotechnology, 43(7), 668–681. https://doi.org/10.1080/10826068.2013.772064 Kumar, R., Vikramachakravarthi, D., & Pal, P. (2014). Production and purification of glutamic acid: A critical review towards process intensification. Chemical Engineering and Processing: Process Intensification, 81, 59–71. https://doi.org/10.1016/j.cep.2014.04.012 Kumar, V., Brancoli, P., Narisetty, V., Wallace, S., Charalampopoulos, D., Kumar Dubey, B., Kumar, G., Bhatnagar, A., Kant Bhatia, S., & J.Taherzadeh, M. (2023). Bread waste – A potential feedstock for sustainable circular biorefineries. Bioresource Technology, 369(December 2022), 128449. https://doi.org/10.1016/j.biortech.2022.128449 Madhavan Nampoothiri, K., & Pandey, A. (1996). Solid state fermentation for L-glutamic acid production using Brevibacterium sp. Biotechnology Letters, 18(2), 199–204. https://doi.org/10.1007/BF00128679 Melikoglu, M., & Webb, C. (2013). Use of waste bread to produce fermentation products. In Food Industry Wastes (First Edit, pp. 63–76). Elsevier BV. https://doi.org/10.1016/B978-0-12-391921- 2.00004-4 Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030 Ng, H. S., Kee, P. E., Yim, H. S., Chen, P. T., Wei, Y. H., & Chi-Wei Lan, J. (2020). Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 302(135), 122889. https://doi.org/10.1016/j.biortech.2020.122889 Pietrzak, W., & Kawa-Rygielska, J. (2014). Ethanol fermentation of waste bread using granular starch hydrolyzing enzyme: Effect of raw material pretreatment. Fuel, 134, 250–256. https://doi.org/10.1016/j.fuel.2014.05.081 Reddy, M. K., Vaddadi, U., Vijayalakshmi, P., & Manasa, R. V. (2020). Dioscorea bulbifera l. - a novel source for the production of Glutamic acid using statistical optimization method. International Journal of Pharmaceutical Research, 12(3), 86–98. https://doi.org/10.31838/ijpr/2020.12.03.012 Sadaf, A., Kumar, S., Nain, L., & Khare, S. K. (2021). Bread waste to lactic acid: Applicability of simultaneous saccharification and solid state fermentation. Biocatalysis and Agricultural Biotechnology, 32(October 2020). https://doi.org/10.1016/j.bcab.2021.101934 Schultz, C., Niebisch, A., Gebel, L., & Bott, M. (2007). Glutamate production by Corynebacterium glutamicum: Dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Applied Microbiology and Biotechnology, 76(3), 691–700. https://doi.org/10.1007/s00253-007-0933-9 Schulz, A. A., Collett, H. J., & Reid, S. J. (2001). Nitrogen and carbon regulation of glutamine synthetase and glutamate synthase in Corynebacterium glutamicum ATCC 13032. FEMS Microbiology Letters, 205(2), 361–367. https://doi.org/10.1016/S0378- 1097(01)00501-8 Sindhu, R., Gnansounou, E., Rebello, S., Binod, P., Varjani, S., Thakur, I. S., Nair, R. B., & Pandey, A. (2019). Conversion of food and kitchen waste to value-added products. Journal of Environmental Management, 241, 619–630. https://doi.org/10.1016/j.jenvman.2019.02.053 Spies, J. R. (1957). Colorimetric procedures for amino acids. Methods in Enzymology, 3(C), 467–477. https://doi.org/10.1016/S0076- 6879(57)03417-5 Sükrü Demirci, A., Palabıyık, I., Gümüs, T., & Özalp, Ş. (2017). Waste Bread as a Biomass Source: Optimization of Enzymatic Hydrolysis and Relation between Rheological Behavior and Glucose Yield. Waste and Biomass Valorization, 8(3), 775–782. https://doi.org/10.1007/s12649-016-9601-6 Sunitha, I., Subba Rao, M. V., & Ayyanna, C. (1998). Optimization of medium constituents and fermentation conditions for the production of L-glutamic acid by the coimmobilized whole cells of Micrococcus glutamicus and Pseudomonas reptilivora. Bioprocess Engineering, 18(5), 353–359. https://doi.org/10.1007/s004490050455 Tavakkoli, M., Hamidi-Esfahani, Z., & Azizi, M. H. (2012). Optimization of Corynebacterium glutamicum Glutamic Acid Production by Response Surface Methodology. Food and Bioprocess Technology, 5(1), 92–99. https://doi.org/10.1007/s11947-009- 0242-7 Torabi, S., Satari, B., & Hassan-Beygi, S. R. (2021). Process optimization for dilute acid and enzymatic hydrolysis of waste wheat bread and its effect on aflatoxin fate and ethanol production. Biomass Conversion and Biorefinery, 11(6), 2617–2625. https://doi.org/10.1007/s13399-020-00676-3 Tryfona, T., & Bustard, M. T. (2004). Mechanistic understanding of the fermentative L-glutamic acid overproduction by Corynebacterium glutamicum through combined metabolic flux profiling and transmembrane transport characteristics. Journal of Chemical Technology and Biotechnology, 79(12), 1321–1330. https://doi.org/10.1002/jctb.1133 Uçkun Kiran, E., Trzcinski, A. P., Ng, W. J., & Liu, Y. (2014). Bioconversion of food waste to energy: A review. Fuel, 134, 389–399. https://doi.org/10.1016/j.fuel.2014.05.074 Uhde, A., Youn, J. W., Maeda, T., Clermont, L., Matano, C., Krämer, R., Wendisch, V. F., Seibold, G. M., & Marin, K. (2013). Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 97(4), 1679–1687. https://doi.org/10.1007/s00253-012-4313-8 Wen, J., Xiao, Y., Liu, T., Gao, Q., & Bao, J. (2018). Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum. Biotechnology for Biofuels, 11(1), 1–12. https://doi.org/10.1186/s13068-018-1132-x Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., & Pokomeda, K. (2014). Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource Technology, 160, 150–160. https://doi.org/10.1016/j.biortech.2014.01.021 Yang, P., Chen, Y., & Gong, A. dong. (2021). Development of a defined medium for Corynebacterium glutamicum using urea as nitrogen source. 3 Biotech, 11(9), 1–10. https://doi.org/10.1007/s13205- 021-02959-6 Zhang, A. Y. Z., Sun, Z., Leung, C. C. J., Han, W., Lau, K. Y., Li, M., & Lin, C. S. K. (2013). Valorisation of bakery waste for succinic acid production. Green Chemistry, 15(3), 690–695. https://doi.org/10.1039/c2gc36518a | ||
آمار تعداد مشاهده مقاله: 359 تعداد دریافت فایل اصل مقاله: 109 |