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 Food waste generation has increased in recent years due to population growth. The continuous rise in food 
production for human consumption has resulted in 1.3 billion tons of food waste annually worldwide. Waste bread, 
an inexpensive substrate with high carbohydrate content, can hydrolyze by proper methods, such as enzymatic 
hydrolysis, for utilization in fermentation. Glutamic acid, a non-essential amino acid with various applications in 
pharmaceuticals, food industries, and cosmetics, can be produced by fermentation. In this study, we applied waste 
bread, as a cost-effective starchy waste, to produce fermentable substances through enzymatic hydrolysis. This 
process resulted in a significant increase in reducing sugar concentration from 1.285 ± 0.195 g/L to 123.282 ± 0.924 
g/L. The obtained hydrolysate was utilized as a carbonic source for the glutamic acid synthesis by Corynebacterium 
glutamicum PTCC 1532. To enhance the glutamic acid yield, response surface methodology was employed to 
optimize the independent variables. The optimum levels of reducing sugar concentration of hydrolysate, urea 
concentration, biotin concentration, and inoculum size was 49.889 g/L, 6.812 g/L, 6.57 μg/L, and 5.339% (v/v), 
respectively. Under these optimized conditions, the experimental glutamic acid production was 21.34 ± 0.204 g/L, 
which demonstrated a reasonable correlation between the predicted and experimental results. This study illustrated 
that waste bread can serve as a low-cost carbon source for producing valuable compounds such as glutamic acid.  
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1. Introduction 

Food waste generation has increased in recent years due to 
population growth (Benabda et al., 2019). The continuous rise in 
food production for human consumption has resulted in 1.3 billion 
tons of food waste annually worldwide (Ng et al., 2020), which 
includes cereals, fruits, vegetables, meat, fish, milk, and eggs 
(Haroon et al., 2016). In Asia, predictions illustrate that food waste 
production will reach 416 million tons by 2025, up from 278 million 
tons in 2005 (Uçkun Kiran et al., 2014). Over 2 billion tons of cereals 
are harvested globally, despite this abundance, many countries still 
dispose of substantial amounts of food products as waste. This not 
only represents a missed opportunity to reduce food waste but also 

emphasizes the necessity for more sustainable practices in food 
waste management (Sindhu et al., 2019).  

Bread, the most consumed bakery product, has a limited shelf 
life due to physicochemical changes during storage that affect taste 
and texture. Therefore, bread is often discarded without proper 
treatment, resulting in economic effects and environmental concerns 
(V. Kumar et al., 2023). Consequently, suitable waste management 
is essential for safe waste bread recycling. 

Waste bread (WB), an inexpensive substrate with high 
carbohydrate content, can hydrolyze by proper methods, such as 
enzymatic hydrolysis, for utilization in fermentation. (Melikoglu & 
Webb, 2013; Uçkun Kiran et al., 2014). Regarding this matter, WB 
was employed for fermentative protease and amylase production by 
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Rhizopus oryzae using solid-state fermentation (Benabda et al., 
2019). Also, Sadaf et al. (2021) indicated that WB hydrolysate can 
be utilized for lactic acid production by Lactobacillus paracasei 
(Sadaf et al., 2021). In addition, numerous bio-based products 
including ethanol (Torabi et al., 2021), succinic acid (Gadkari et al., 
2021; Zhang et al., 2013), bio-pigments (Haque et al., 2016), 
glucoamylase and protease (W. Han et al., 2015), and bacteriocin 
(Haroon et al., 2016) can be produced using WB through 
fermentation technique.  

Fermentation technique is the preferred method for producing 
amino acids. This method provides mild reaction conditions, 
economic feasibility, and large-scale production capabilities. 
Glutamic acid (GLU), a non-essential amino acid, can be produced 
by this approach, which is suitable for amino acid production instead 
of other procedures like acidic manner (D’Este et al., 2018). GLU, 
with various applications in pharmaceuticals, food industries, and 
cosmetics, has witnessed a significant surge in demand (Bashir et al., 
2022). For instance, flavor enhancers that improve food taste 
classified as food additives in the food industry, and Monosodium 
Glutamate (MSG), which originated from GLU, is included in this 
classification. As a result, the annual production of GLU has reached 
3 million tons (Wen et al., 2018).  

Various bio-resources have been used for glutamic acid 
production  (GAP). Ghazanfari et al., (2023) investigated the 
potential of dairy sludge and soybean meal as carbon and nitrogen 
sources for L-glutamate production using the Central Composite 
Design (CCD) of Response Surface Methodology (RSM) 
(Ghazanfari et al., 2023). Another study optimized effective 
parameters such as glucose, biotin, urea concentration, and 
temperature to enhance glutamate production by C.glutamicum 
PTCC 1532 using RSM (Fahimitabar et al., 2021). Xylose utilization 
by C.glutamicum is challenging in GAP from lignocellulosic 
biomass due to the coexistence of xylose with inhibitors. Jin et al. 
(2020) applied pretreated wheat straw solids to glutamate production 
by simultaneous assimilation of xylose and glucose (Jin et al., 2020). 
In another study carried out by Reddy et al. (2020), Dioscorea 
bulbifera L. (Or air potato) was utilized as a cost-effective carbon 
source for producing GLU through submerged bacterial 
fermentation with C.glutamicum DSM 20300 and Arthrobacter 
globiformis MTCC 4299. Also, In order to enhance GLU 
productivity, Urea, biotin, and mineral salt solution concentration 
were optimized using CCD (Reddy et al., 2020). However, previous 
studies have explored the application of waste materials such as date 
waste (Abdenacer et al., 2012; Tavakkoli et al., 2012), cassava starch 
(Jyothi et al., 2005), palm waste (Das et al., 1995), and sugar cane 
bagasse (Madhavan Nampoothiri & Pandey, 1996) for GAP. 

C.glutamicum is a prominent microorganism that widely used to 
produce GLU. This gram-positive, biotin auxotrophic, rod-shaped, 
facultative anaerobic bacterium does not produce spores and grows 
fast in favorable conditions. Furthermore, it recognized as GRASS 
(D’Este et al., 2018; Ganguly, 2023). The bacterium is distinguished 
from other gram-positive bacteria by its distinctive outer layer, 
which comprises mycolic acid with attached alkyl groups that coat 
its peptidoglycan layer (D’Este et al., 2018; Fahimitabar et al., 2021; 
R. Kumar et al., 2014). This unique feature can significantly impact 
cell division and serve as a robust barrier for GLU secretion, which 
can influence by factors such as biotin deficiency, detergent addition, 
and beta-lactam antibiotics like penicillin (Ganguly, 2023). 
According to Hirasawa & Wachi (2017), penicillin addition and 
biotin deficiency result in a decrease in 2-oxoglutarate 
dehydrogenase complex (ODHC) activity with no effect on the 
Glutamate dehydrogenase (GDH) activity (Hirasawa & Wachi, 

2017). This issue leads to a restriction in mycolic acid layer 
synthesis, ultimately causing an increase in glutamate flux, as 
explained by Schultz et al. 2007. GDH catalyzes the reversible 
reaction of 2-oxogluratrate to generate glutamate (Schulz et al., 
2001).  

Applying a cost-effective substrate is essential for industrial 
biotechnology. A novel aspect of this research was the utilization of 
WB as a starchy substrate for GAP. Therefore, the current study 
aimed to employ WB for fermentative GAP using C.glutamicum 
PTCC 1532 and then optimization of effective parameters for 
enhancing GLU yield. To achieve this, WB hydrolysis was 
performed using amylolytic enzyme to produce the fermentable 
compound. Subsequently, the optimum level of the effective 
variables including reducing sugar concentration of hydrolysate, 
urea concentration, biotin concentration, and inoculum size was 
evaluated and statistically authenticated using RSM. 

 
 

2. Material and Methods 

2.1. Preparation of WB 

WB was collected from a local bakery shop in Tehran, Iran. After 
drying at room temperature, the samples were ground in a knife mill 
grinder. The obtained powder was sieved (1-2 mm mesh size) and 
stored at -30 °C until the hydrolysis process. 

2.2. Enzymatic hydrolysis of WB 

Enzymatic hydrolysis (EH) was conducted in a 250-mL 
Erlenmeyer flask using thermostable α-amylase and glucoamylase 
from DSM, Netherlands. 15% (w/v) WB solution was gelatinized at 
100 °C, and cooled to 50 °C for the liquefaction process. In this step, 
the pH was adjusted to 5.8 by diluted HCl and NaOH, and then 0.5 
mg α-amylase/g-WB was added at 50 °C and 600 rpm for an hour. 
Due to the inhibitory properties of alpha-amylase on glucoamylase 
activity, the solution was boiled for 15 minutes to deactivate the 
enzyme before adjusting the pH to 4.3 for saccharification (Torabi et 
al., 2021). Glucoamylase was loaded at 0.45 mg/g-WB ratio, and 
saccharification was carried out at 60 ℃ and 600 rpm (Torabi et al., 
2021). The reducing sugar concentration of hydrolysate was 
determined by the DNS method. 

 
2.3. Microorganism preparation 
 

C.glutamicum PTCC 1532 was purchased from the Persian Type 
Culture Collection (PTCC), Tehran, Iran. Freeze-dried bacterium 
was reconstituted in a nutrient broth and incubated at 30 °C and 120 
rpm agitation for 24 h. Activated bacteria were preserved in 2 ml 
vials containing 400 µL of glycerol at -40 °C. 

 
2.4. Pre-culture preparation 
 

C.glutamicum PTCC 1532 transferred aseptically to a 250-mL 
Erlenmeyer flask containing 100 mL of sterilized pre-culture with 
the following composition (g/L): glucose 50, yeast extract 5, 
MnSO4.H2O 0.01, FeSO4.7H2O 0.01, MgSO4.7H2O 2, KH2PO4 1, 
and K2HPO4 1. The optimum pH value for C.glutamicum growth is 
7-8 (Ganguly, 2023). Therefore, the pH of the pre-culture and main 
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culture was adjusted to 7 using diluted HCl and NaOH. (Tavakkoli 
et al., 2012). The inoculated pre-culture was incubated at 35 °C with 
200 rpm agitation for 18 hours, and then used for inoculation of the 
main culture. 

 
2.5. Main culture preparation 
 

The experiments were conducted in a 250-mL Erlenmeyer flask 
using batch conditions. 100 ml of the main culture was prepared, 
consisting of MnSO4.H2O 0.01, FeSO4.7H2O 0.01, MgSO4.7H2O 2, 
KH2PO4 1, and K2HPO4 1 (g/L) (Tavakkoli et al., 2012). The 
Reducing Sugar Concentration of Hydrolysate (RSCH), urea 
concentration, biotin concentration, and inoculum size of the main 
culture were adjusted as per the experimental design. The 
fermentation conditions were as follows: temperature 35 °C, 
agitation 300 rpm, fermentation period 48 h, and pH 7. Penicillin was 
added to the medium approximately 8 hours after fermentation began 
to enhance GLU flux (Tavakkoli et al., 2012). Subsequently, the 
broth was centrifuged (8000 rpm, 15 min) to separate the bacteria 
cells, and the supernatant was used to determine the GLU content 
(Fahimitabar et al., 2021). Due to heat sensitivity, urea, and biotin 
were sterilized using membrane filter. 
 
2.6. Experimental design by RSM 
 

RSM employs statistical techniques to identify the optimal 
experimental conditions with minimal experiments (Witek-Krowiak 
et al., 2014). In this research, RSM was utilized to assess the effects 
of independent variables on GAP, including their interactions. To 
optimize the GLU productivity by C.glutamicum PTCC 1532, four 
independent variables in 2 levels of CCD with 30 runs were 
employed (24 runs, and 6 center points). The independent factors 
selected for optimization were RSCH, urea concentration, biotin 
concentration, and inoculum size (Table 1). All experiments were 
conducted in triplicate, and statistical analysis was carried out using 
Design Expert version 13 trial software (Stat Ease Inc., Minneapolis, 
MN, USA). The results were used to establish an optimum condition 
for GAP. 

 
Table 1. Independent variable levels utilized in the CCD. 

Factor Name Units Min Center Max 
Coded 
Low 

Coded 
High 

A RSCH g/L 20 40 60 -1 ↔ 
20.00 

+1 ↔ 
60.00 

B Urea 
Concentration g/L 4 7 10 -1 ↔ 

4.00 
+1 ↔ 
10.00 

C Biotin 
Concentration µg/L 0 5 10 -1 ↔ 

0.00 
+1 ↔ 
10.00 

D Inoculum Size % 
(v/v) 2 6 10 -1 ↔ 

2.00 
+1 ↔ 
10.00 

 

The experimental variables were coded using Eq. 1, where 𝑋! 
represents the actual value of each independent variable, 𝑋" 
represents the actual value at the center point, ∆𝑋! represents the step 
change value, and 𝑥! represents the coded value of each independent 
variable. 

 
𝑥! =

#!$#"
∆#!

                                                                                         (1) 
 
The following quadratic equation was used to describe the model 

behavior. Where 𝑦 is the predicted value, 𝑏" is a constant coefficient, 
𝑏!, 𝑏!!, and 𝑏!& are first-order, second-order, and interaction 

coefficients, 𝑥! is the independent variable of 𝑖, 𝑥!𝑥&, and 𝑥!' are the 
interaction between independent variables and the second-order 
coefficient respectively. 

𝑦 = 𝑏" +)𝑏!𝑥!

()*

!)+

+)𝑏!&

()*

!)+

𝑥!𝑥& +)𝑏!!𝑥!'
()*

!)+

																																		(2) 

 
2.7. Analytical methods 
 
2.7.1. Chemical composition of WB 
 

The moisture content by oven drying (105 °C, 3h), ash by 
incinerating a certain amount of the sample, and total protein (N × 
6.25) by the Kjeldahl method, were determined according to the 
AOAC methods (AOAC, 2019). 

 
2.7.2. Measurement of reducing sugar content 
 

The reducing sugar content was determined by 3,5-
dinitrosalicylic acid (DNS) method (Miller, 1959). 1 mL sample was 
mixed with 3 mL of DNS reagent in a 25 mL test tube, then heated 
in boiling water for 5 minutes. The absorbance of the sample was 
recorded at 540 nm using UV–vis spectrophotometer (Cecil CE2041 
UV/Vis Spectrophotometer Single beam, China). The reducing sugar 
content was calculated from glucose standard curve. All experiments 
were performed in triplicate. 
 
2.7.3. Analysis of GAP 
 

GLU was measured using the ninhydrin method (Spies, 1957). 
Ninhydrin reagent reacted with free alpha-amino acid, and 
Ruhemann’s purple appeared. To do this, 1 ml of culture media 
supernatant was mixed with 1 ml of ninhydrin reagent in the test 
tube, and placed in a boiling water bath for an hour. After that, 1 ml 
of acetic acid was added and the absorbance was measured at 570 
nm using UV-Vis spectrophotometer (Cecil CE2041 UV/Vis 
Spectrophotometer Single beam, China). The standard curve was 
drawn by measuring the absorbance of different concentrations of 
GLU. 

 
2.7.4. Optical density measurement 
 

The optical density (OD600) of the culture broth at 600 nm was 
measured to determine the bacterial growth using UV-visible 
spectrophotometer (Cecil CE2041 UV/Vis Spectrophotometer 
Single beam, China) (Yang et al., 2021). 
 

3. Results and Discussion 

3.1. Chemical composition of WB 
 

Table 2 depicts the chemical composition of WB. The chemical 
composition of WB depends on the extraction degree of flour. 
Similar to our results, Torabi et al. (2021) reported that WB contains 
9.8% moisture and 13% protein (Torabi et al., 2021). 

 
3.2. EH of waste bread 
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Hydrolytic enzymes have been shown to effectively break down 
starch into fermentable sugars, as demonstrated in previous studies 
(AČANSKI et al., 2014; Benabda et al., 2018; Demirci et al., 2019; 
Ebrahimi et al., 2008; Hudečková et al., 2017; Pietrzak & Kawa-
Rygielska, 2014; Sükrü Demirci et al., 2017; Torabi et al., 2021). As 
described in section 2.2, the initial step involved the utilization of 
heat-resistant α-amylase to liquefy the starch of the WB. The α-1,4-
glycosidic bonds in the amylose and amylopectin chains were broken 
down to generate dextrin during liquefaction and decrease the 
viscosity of the gelatinized WB slurry. In the second step, 
glucoamylase was applied for saccharification, to obtain fermentable 
sugar such as glucose (Pietrzak & Kawa-Rygielska, 2014). 
 

Table 2. Chemical composition of WB. 

Parameters Values 
Moisture Content 10.663 ± 0.334 * 

Total Protein (dry base) 14.598 ± 0.375 
Ash (dry base) 1.1004 ± 0.116 

*Mean of three replicates ± Standard deviation 
 

The maximum reducing sugar concentration achieved was 
123.282 ± 0.924 g/L, while the initial quantity was 1.285 ± 0.195 
g/L. Therefore, EH demonstrated a high potential to produce 
fermentable sugar from WB for utilization in fermentation as an 
economical carbon source. The reducing sugar production obtained 
in this research was higher than previous reports. Hudečková et al. 
(2017) investigated the efficiency of enzymatic hydrolysis using a 
15% (w/v) of WB and varying factors such as temperature, pH, and 
time. They reported that the final amount of produced glucose under 
optimal conditions was 70.28 g/L  (Hudečková et al., 2017). 
Similarly, W. Han et al. (2017) applied Aspergillus hydrolytic 
enzymes to generate utilizable sugar for ethanol production and 
achieved a maximum glucose production of 40.58 g/L after 24 hours 
at 55 °C (W. Han et al., 2017). Furthermore, WB was reused as a 
substrate for cultivating bakery yeast. 25% (w/v) of the WB was 
transformed into a gel-like substance by heating it up to 60 °C for 15 
minutes. Then, the resulting solution was subjected to a hydrolysis 
process using amylase and glucoamylase enzymes, with the 
inclusion of protease in the second step. Ultimately, total amount of 
produced reducing sugar was 57.6 g/L (without protease) and 60.6 
g/L (with protease) (Benabda et al., 2018). 
 
3.3. Analysis of GAP by RSM 
 

Table 3 represents a summary of the experimental and predicted 
GAP, with the highest and lowest yields obtained in runs 7 (22.656 
± 0.063 g/L) and 9 (10.204 ± 0.083 g/L), respectively. Table 4 
reports the degree of freedom, sum of squares, mean squares, 
significant level (P-value), and Fisher test (F-value) for each term to 
assess their statistical significance. GLU responses were modeled 
using linear, two-factor interaction (2FI), quadratic, and cubic 
models. After statistical analysis, the quadratic model was identified 
as the most fitting model (p-value < 0.05 and Lack of Fit p-value > 
0.05) (Table 5).  

 
3.4. Checking of model adequacy 
 

In general, once an acceptable optimization model is obtained, it 
is necessary to verify its predictive ability to confirm that the model 
is adequate for approximating the system. Various statistical 
expressions can be used to check the adequacy of the model (Breig 
& Luti, 2021). Therefore, the coefficient of determination (R2), 

adjusted determination coefficient (R2
adjusted), predicted 

determination coefficient (R2
predicted), F-value, p-value, and lack of 

fit were considered. Table 6 represents the statistical parameters for 
the quadratic model. 

The GAP model was found to be significant, as approved by the 
F-value of 44.74 and p-value < 0.05. Additionally, linear coefficients 
(A, B, C, D), quadratic term coefficients (A2, B2), and interaction 
term coefficients (AD, BD) were all found to have p-value less than 
0.05, indicating their significant effects on GAP. The impact of each 
variable on GAP can be determined by its corresponding F-value 
(Witek-Krowiak et al., 2014). The RSCH with the highest F-value 
has the greatest influence on the GAP.  

A model with an R2 value close to 1.0 indicates excellent 
prediction efficiency (Breig & Luti, 2021). This model showed a 
high coefficient of determination (R2) of 0.9766, which means that 
most of the variations in the data could be explained, and a close 
correlation between effective variables and response and their key 
role in the prediction of the GAP model. Moreover, R2

adjusted was 
found to be nearly equal to R2, indicating that the model is suitable 
for predicting experimental data associated with GAP. R2

predicted 
determined by PRESS describes the model ability to predict new 
responses. PRESS value is a measure utilized to assess model ability 
to predict new responses (Breig & Luti, 2021). The preferable result 
is a lower value of PRESS, which in current study, the PRESS was 
obtained as 32.18. A signal-to-noise ratio greater than 4 is considered 
ideal by Adeq Precision. The calculated Adeq Precision of 20.0449 
indicates a satisfactory signal (Table 6). 

The model accuracy can be assessed through a lack of fit value. 
This index determines the model inadequacy by comparing pure 
error to residual error from the experimental design points of 
replication and center points in the design (Breig & Luti, 2021). The 
lack of a fit should not be significant (p-value > 0.05). According to 
the ANOVA findings, the p-value of lack of fit was less than 0.05 
(Table 4). In statistical studies, residuals are the differences between 
the observed and predicted values of the model. A normal plot of 
residuals is a useful graph for evaluating whether a dataset conforms 
to a normal distribution (Breig & Luti, 2021). The normal plot of 
residuals, shown in Fig. 1-A, suggests that the regression model has 
a normal distribution. Also, plotting the predicted versus 
experimental responses constructs a helpful plot for model 
evaluation. In ideal mode, the data establishes a 45° line and any 
aggregation of points above or below this line indicates areas of over 
or underprediction. Fig. 1-B, illustrates the predicted values 
compared to the experimental values, indicating an acceptable 
agreement between the data. Residual vs. predicted and residual vs. 
runs plots are displayed in Figures 1-C and 1-D, respectively. These 
plots demonstrated well-distributed data obtained from the GAP 
model. 

 
3.5. GAP model 

 
The relationship between variables and responses related to GAP 

was expressed through the development of second-order equations 
using multiple regression analysis on the experimental data (Date not 
shown). The equations, which include linear, quadratic, and 
interactive terms, are presented in terms of coded factors in Eq 3. 

 
GAP = 21.19 + 2.3 A - 0.4378 B + 0.5259 C - 0.4391 D - 0.2808 

AB - 0.2455 AC + 0.5402 AD + 0.5745 BC + 0.1306 BD - 0.3878 
CD - 2.08 A² - 3.38 B² - 0.6693 C² - 0.9388 D²                             (3) 

 



Jafari Shad et al.                                                                                                                                                                                         JFBE 7(1): 9-18,2024  

 

 13 

* Significant at 5% level. 
 
 
 
 
 

 
 
 
 
 
 

Table 3. CCD with experimental and predicted values of GAP.  

Run Space Type 
Uncoded and coded values of variables GAP 

A B C D Experimental Predicted g/L g/L µg/L % (v/v) 
1 Axial 40 (0) 7 (0) 5 (0) 10 (+1) 19.103 ± 0.578* 19.81 
2 Center 40 (0) 7 (0) 5 (0) 6 (0) 20.204 ± 0.104 21.19 
3 Factorial 20 (-1) 10 (+1) 0 (-1) 10 (+1) 10.398 ± 0.133 9.86 
4 Axial 40 (0) 4 (-1) 5 (0) 6 (0) 18.244 ± 0.209 18.25 
5 Factorial 60 (+1) 10 (+1) 0 (-1) 10 (+1) 15.808 ± 0.140 15.46 
6 Factorial 20 (-1) 4 (-1) 0 (-1) 10 (+1) 11.122 ± 0.511 11.07 
7 Center 40 (0) 7 (0) 5 (0) 6 (0) 22.656 ± 0.063 21.19 
8 Axial 20 (-1) 7 (0) 5 (0) 6 (0) 16.460 ± 0.197 16.82 
9 Factorial 20 (-1) 10 (+1) 0 (-1) 2 (-1) 10.204 ± 0.083 10.79 

10 Factorial 60 (+1) 10 (+1) 10 (+1) 10 (+1) 16.293 ± 0.226 16.4 
11 Center 40 (0) 7 (0) 5 (0) 6 (0) 19.638 ± 0.132 21.19 
12 Axial 40 (0) 7 (0) 10 (+1) 6 (0) 21.297 ± 0.194 21.05 
13 Axial 40 (0) 7 (0) 5 (0) 2 (-1) 21.221 ± 0.097 20.69 
14 Center 40 (0) 7 (0) 5 (0) 6 (0) 21.844 ± 0.653 21.19 
15 Axial 40 (0) 7 (0) 0 (-1) 6 (0) 19.566 ± 0.756 20 
16 Factorial 60 (+1) 10 (+1) 0 (-1) 2 (-1) 14.188 ± 0.120 14.23 
17 Factorial 60 (+1) 4 (-1) 0 (-1) 2 (-1) 17.257 ± 0.157 17.07 
18 Factorial 60 (+1) 10 (+1) 10 (+1) 2 (-1) 16.466 ± 0.089 16.71 
19 Factorial 60 (+1) 4 (-1) 0 (-1) 10 (+1) 17.379 ± 0.153 17.79 
20 Axial 40 (0) 10 (+1) 5 (0) 6 (0) 17.189 ± 0.118 17.37 
21 Axial 60 (+1) 7 (0) 5 (0) 6 (0) 21.587 ± 0.160 21.41 
22 Factorial 20 (-1) 10 (+1) 10 (+1) 10 (+1) 11.407 ± 0.112 11.78 
23 Factorial 20 (-1) 10 (+1) 10 (+1) 2 (-1) 14.897 ± 0.094 14.25 
24 Center 40 (0) 7 (0) 5 (0) 6 (0) 21.652 ± 0.068 21.19 
25 Factorial 60 (+1) 4 (-1) 10 (+1) 2 (-1) 16.959 ± 0.115 17.26 
26 Factorial 60 (+1) 4 (-1) 10 (+1) 10 (+1) 16.819 ± 0.114 16.43 
27 Factorial 20 (-1) 4 (-1) 10 (+1) 2 (-1) 13.147 ± 0.184 13.68 
28 Factorial 20 (-1) 4 (-1) 10 (+1) 10 (+1) 10.954 ± 0.741 10.68 
29 Factorial 20 (-1) 4 (-1) 0 (-1) 2 (-1) 12.849 ± 0.072 12.51 
30 Center 40 (0) 7 (0) 5 (0) 6 (0) 21.710 ± 0.140 21.19 

 

*Mean of three replicates ± Standard deviation. 
 
 

Table 4. Analysis of Variance for GAP. 

Source Sum of Squares df Mean Square F-value p-value  
Model 415.69 14 29.69 44.74 < 0.0001 * 

A-RSCH 94.84 1 94.84 142.9 < 0.0001 * 
B-Urea Concentration 3.45 1 3.45 5.2 0.0377 * 

C-Biotin Concentration 4.98 1 4.98 7.5 0.0152 * 
D-Inoculum size 3.47 1 3.47 5.23 0.0371 * 

AB 1.26 1 1.26 1.9 0.1881  
AC 0.9643 1 0.9643 1.45 0.2467  
AD 4.67 1 4.67 7.04 0.0181 * 
BC 5.28 1 5.28 7.96 0.0129 * 
BD 0.2728 1 0.2728 0.4111 0.5311  
CD 2.41 1 2.41 3.63 0.0762  
A² 11.18 1 11.18 16.85 0.0009 * 
B² 29.67 1 29.67 44.71 < 0.0001 * 
C² 1.16 1 1.16 1.75 0.2059  
D² 2.28 1 2.28 3.44 0.0834  

Residual 9.96 15 0.6637 - -  
Lack of Fit 3.57 10 0.3568 0.2793 0.9592  
Pure Error 6.39 5 1.28 - -  
Cor Total 425.64 29 - - --  
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Where GAP is response and A, B, C, and D are RSCH, urea 
concentration, Biotin concentration, and inoculum size respectively. 

 
3.6. Effects of independent variables and Their Interactions 
on GAP 

 
An effective method for analyzing the relationship between 

independent variables and GAP is utilizing 3D surface and 2D 
contour plots. These plots provide a visual representation of the 
regression equation and illustrate how two variables impact the 
response, while the remaining variables are maintained the center 
point (Breig & Luti, 2021). Fig. 2-4 depicted the interaction of RSCH 
and Urea concentration, RSCH and Biotin concentration, RSCH and 
Inoculum size, Urea concentration and Biotin concentration, Urea 
concentration and Inoculum size, and Biotin concentration and 
Inoculum size on GAP respectively.  

 
Table 5. The suggested model for GAP. 

Source Sequential 
p-value 

Lack of Fit 
p-value Adj-R² Pre-R²  

Linear 0.112 0.0057 0.1309 -0.0679  
2FI 0.9857 0.0029 -0.0903 -1.6812  

Quadratic < 0.0001 0.9592 0.9548 0.9244 Suggested 

Cubic 0.8713 0.8922 0.9349 0.8445  
 

Table 6. Statistical parameters for the quadratic model of GAP. 

R² 0.9766 Std. Dev. 0.8147 
Adjusted R² 0.9548 Mean 16.95 
Predicted R² 0.9244 C.V. % 4.81 

Adeq Precision 20.0449 PRESS 32.18 
 
 
3.6.1. Effect of RSCH on GAP 

 
Different carbohydrates like glucose, fructose, and sucrose can 

be consumed by C.glutamicum (Uhde et al., 2013), but glucose has 
been recognized as the most suitable carbon source according to the 
previous researches (Alharbi et al., 2019; Das et al., 1995). Based on 
ANOVA results, it can be concluded that RSCH (as glucose-rich 
slurry) has the most heightened effect on GLU synthesis, with an F-
value of 142.9 and p-value < 0.05 (Table 4). These findings were in 
line with those found in the literature (Alharbi et al., 2019; Bashir et 
al., 2022; R. S. Kumar et al., 2013; Sunitha et al., 1998). 

High substrate concentration has an adverse effect on bacterial 
growth owing to the establishment of hypertonic environment (Das 
et al., 1995; R. S. Kumar et al., 2013). Khan et al. (2005) found that 
C.glutamicum growth was enhanced at elevated substrate 
concentrations (glucose) up to 50 g/L without any inhibitory effect. 
However, when the glucose concentration exceeded 50 g/L, 
C.glutamicum growth and GAP were decreased (Khan et al., 2005). 
Also, Alharbi et al. (2019) stated that an obvious correlation exists 
between GAP and glucose concentrations. Their research 
demonstrated that an increase in glucose concentrations up to 40-50 
g/L results in an increase in GAP (Alharbi et al., 2019). The effect 
of RSCH on GAP is depicted in Fig. 5-A. According to this plot, by 
increasing RSCH up to 50 g/L, GAP was enhanced, and after that 
was decreased.  

Based on the RSM results, the optimum RSCH level was 49.889 
g/L, which is consistent with the earlier findings (Alharbi et al., 
2019; Bashir et al., 2022). Bashir et al. (2022) explored the 
optimization of fermentation parameters such as temperature, 
agitation speed, and carbon source concentration to enhance GAP 

using C.glutamicum. They revealed that the optimal glucose level 
was 50 g/L, leading to a maximum GAP of 14.2 g/L under optimized 
conditions (Bashir et al., 2022). In a study conducted by Alharbi et 
al. (2019) the impact of process parameters on the GAP was 
examined. After analyzing the results, it was found that the optimal 
glucose concentration was 50 g/L (Alharbi et al., 2019). 

However, Jin et al. (2020) reported that C.glutamicum GJ04 
produced 39.8 g/L of glutamate from 60.3 g/L of glucose and 38.8 
g/L of xylose (Jin et al., 2020). Another study was conducted on 
optimizing fermentation parameters in GAP. They found that the 
optimal glucose level was 61.5575 kg/m3 (Sunitha et al., 1998).  

 

 
Fig. 1. A) Normal plot of residuals, B) Predicted values vs. actual values plot, 
C) Residual vs. predicted values plot, and D) Residual vs. run number. 

 
3.6.2. Effect of urea concentration on GAP 

 
The impact of nitrogen sources on amino acid synthesis is 

significant since there is a direct correlation between nitrogen 
metabolism and amino acid production (Schulz et al., 2001). Urea 
was identified as the preferred nitrogen source for C.glutamicum 
(Alharbi et al., 2019), which may be attributed to the robust urease 
activity of the bacterium (Ganguly, 2023). Besides, Yang et al. 
(2021) conducted a study that revealed C.glutamicum has a higher 
preference for organic nitrogen sources, such as urea, compared to 
inorganic nitrogen sources like (NH4)2SO4 (Yang et al., 2021). Based 
on the results of the statistical analysis, it was determined that the 
urea concentration has a significant impact on the GLU 
accumulation (p-value < 0.05). Nevertheless, a study reported that 
an adequate concentration of urea leads to an increase in GAP. 
However, excessive concentration of urea can impede cell growth 

(Alharbi et al., 2019; Jyothi et al., 2005). As depicted in Figure 5-B, 
GLU accumulation increased, with the increase in urea concentration 
within the range of 5-7.5 g/L. It declined at higher concentrations 
owing to release of surplus ammonium ions during urea hydrolysis 
(Jyothi et al., 2005).  
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Fig. 2. 3D and, 2D plots of interaction of independent variables on GAP. (A) 
and, (B): RSCH and Urea concentration, (C) and, (D): RSCH and Biotin 
concentration (Other variables held in center point). 
 
 

The optimal urea concentration was determined to be 6.814 g/L. 
This finding is in line with those found in the literature (Fahimitabar 
et al., 2021; Sunitha et al., 1998). Fahimitabar et al. (2021) 
demonstrated the significant impact of urea on GAP. They reported 
that 0.3 g/dL was the optimal urea concentration, which resulted in 
19.84 mg/mL GAP under optimized conditions (Fahimitabar et al., 
2021). Sunitha et al. (1998) utilized RSM to investigate the optimal 
urea concentration. Their findings showed that the optimum urea 
concentration was 7.3272 Kg/m3. 

 
3.6.3. Effect of biotin concentration on GAP 

 
Biotin, as a cofactor for acetyl-CoA carboxylase, plays a crucial 

role in fatty acid synthesis in C.glutamicum. This biotin auxotrophic 
bacterium is unable to produce GLU under normal growth conditions 
in the presence of excess biotin (Wen et al., 2018). Biotin is essential 
for C.glutamicum growth in trace quantities (X. Han et al., 2019). 
However, the absence of biotin suppresses cell growth, while 
excessive biotin supply hinders GLU secretion by reducing the 
permeability of the bacterial cell wall (Fahimitabar et al., 2021; 
Tryfona & Bustard, 2004). To overcome this issue, certain 
surfactants such as Tween 40, β-lactam antibiotics such as penicillin 
can be used to disrupt the over-strengthened cell structure and 
activate GLU secretion (Hirasawa & Wachi, 2017), as well as 
redirect the carbon flux to GLU synthesis (Wen et al., 2018).  

Based on the RSM findings, it was determined that the optimal 
level of biotin concentration in the GAP was 6.570 μg/L. This 
finding is consistent with a study conducted by Fahimitabar et al. 
(2021), which investigated the parameters affecting GAP by 
C.glutamicum PTCC 1532. They reported that under optimized 
conditions, 9 μg/L was the optimum biotin concentration for 
achieving 19.84 mg/mL GAP. Moreover, Yang et al. (2021) 
demonstrated that a concentration of 10 g/L of biotin is sufficient for 

the growth of C.glutamicum ATCC 13032 and for glutamate 
secretion (Yang et al., 2021). 

It was observed that the addition of 5.6 μg/L biotin led to a faster 
glucose consumption and cell growth in C.glutamicum, while 
simultaneously, GAP was suppressed. Besides, when biotin 
concentration was reduced to 2.5 μg/L, glucose consumption, and 
cell growth were restricted, but GLU generation increased. However, 
when the biotin concentration was further reduced to 0.0625 μg/L, 
GLU generation declined (X. Han et al., 2019). These findings are 
consistent with our results, which showed that higher concentrations 
than optimal biotin level (6.570 μg/L) can decrease GLU secretion 
(Fig. 5-C).  
 
 
 

 
 

Fig. 3. 3D and, 2D plots of the interaction of independent variables on GAP. 
(A) and, (B): RSCH and Inoculum size, (C) and, (D): Biotin concentration 
and Urea concentration (Other variables held in center point). 
 
3.6.4. Effect of inoculum size on GAP 

 
The inoculum size is a critical factor in GAP, which depends on 

the bacterial strain and the culture condition, as stated by Tavakkoli 
et al. (2012). In the current study, the optimal inoculum size was 
determined 5.564% (v/v) which is in agreement with the results 
reported by (Alharbi et al., 2019; Das et al., 1995; R. S. Kumar et al., 
2013).  

According to Jyothi et al. (2005), the amount of GLU produced 
is directly proportional to the inoculum size, ranging from 3-7%, and 
an inoculum size of more than 10% can inhibit the production of 
GLU (Jyothi et al., 2005). Similarly, Alharbi et al. (2019) found that 
increasing the inoculum size resulted in higher GAP efficiency. They 
reported that the optimal level of inoculation was 5% (v/v) (Alharbi 
et al., 2019). Das et al. (1995) reported that the highest GAP was 
obtained under optimum inoculum size of 6% (v/v) (Das et al., 
1995). However, the results of Tavakkoli et al. (2012) do not 
completely align with those of the other studies mentioned, as they 
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did not observe significant changes in GLU production with 
increasing inoculum size (Tavakkoli et al., 2012). 

 

 
 

Fig. 4. 3D and, 2D plots of interaction of independent variables on GAP. (A) 
and, (B): Urea concentration and Inoculum size, (C) and, (D): Biotin 
concentration and Inoculum size (Other variables held in center point). 
 

 
Fig. 5. Optimum points of effective factors on GAP. (A): RSCH, (B): Urea 
concentration, (C): Biotin concentration, (D): Inoculum size. 
 
3.7. Verification of the Fitted Model and Optimum Point 

 
Table 7 illustrates the optimum level of independent variables 

including RSCH, urea concentration, biotin concentration, and 

inoculum size. The verification of the optimization model was 
conducted through experimentation with the optimized conditions of 
independent variables. Predicted GAP was 21.916 g/L under 
optimized conditions, which was validated through experimental 
values performed in triplicate. The GLU yield was 21.34 ± 0.204 g/L 
under the optimized conditions. The desirability of the model was 
determined to be 0.839, which signifies an ideal response value for 
the obtained model. 

 
Table 7. The optimal levels of effective variables in GAP. 

 
Independent Variables GAP 

Desirability 
A B C D Predicted Actual 

49.889 6.812 6.57 5.339 21.916 21.34 
±0.204 0.839 

A: RSCH (g/L) 
B: Urea Concentration (g/L) 
C: Biotin Concentration (µg/L) 
D: Inoculum size (% v/v) 
 
As shown in Fig. 6, bacterial cell growth, sugar consumption, 

and GAP were monitored during the fermentation process under 
optimized conditions. After about 10 hours of fermentation, 
C.glutamicum entered the exponential phase, which was followed by 
the stationary phase. In the stationary phase, most of the sugar in the 
environment was consumed, leading to an increase in GAP. 
However, the plot indicates that not all the sugar in the environment 
was utilized, and approximately 15 g/L of glucose remained in the 
medium after 24 hours of fermentation.  

 

 
Fig. 6. Profile of GAP, sugar consumption and bacteria cell growth during 
fermentation process. 

 

4. Conclusion 

In this study, we applied WB, as cost-effective starchy waste, to 
produce fermentable substances through EH. This process resulted 
in a significant increase in reducing sugar concentration from 1.285 
± 0.195 g/L to 123.282 ± 0.924 g/L. Subsequently, the obtained 
hydrolysate was utilized as a carbonic source for the GLU synthesis 
by C.glutamicum PTCC 1532. To enhance the GLU yield, RSM was 
utilized to optimize the independent variables. The optimum levels 
of reducing sugar concentration of hydrolysate, urea concentration, 
biotin concentration, and inoculum size was 49.889 g/L, 6.812 g/L, 
6.57 μg/L, and 5.339% (v/v), respectively. Under these optimized 
conditions, the experimental GAP was 21.34 ± 0.204 g/L, which 
demonstrated a reasonable correlation between the predicted and 
experimental results. In conclusion, the results illustrated that WB 
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can serve as a low-cost carbon source for producing valuable 
compounds such as GLU. This approach not only reduces food waste 
but also decreases production costs. 
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