تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,518 |
تعداد مشاهده مقاله | 124,133,276 |
تعداد دریافت فایل اصل مقاله | 97,239,299 |
فعالیت ضداکسایشی فراکسیونهای بهدست آمده از فراپالایش غشایی فوکوئیدان هیدرولیزشدة جلبک قهوه ای Nizamuddinia zanardinii | ||
شیلات | ||
دوره 76، شماره 2، خرداد 1402، صفحه 195-207 اصل مقاله (1.14 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfisheries.2022.345894.1338 | ||
نویسندگان | ||
نفیسه سادات موسوی1؛ مهدی طبرسا* 2؛ حسن احمدی گاولیقی3 | ||
1دانشجوی کارشناسی ارشد، گروه فرآوری محصولات شیلاتی، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران | ||
2دانشیار، گروه فرآوری محصولات شیلاتی، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران | ||
3دانشیار، گروه صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، نور، ایران | ||
چکیده | ||
پلی ساکاریدها از جمله درشت مولکولهای زیستی هستند که علاوه بر ویژگی های فیزیکو-شیمیایی منحصر به فرد، توانایی بروز خواص زیستفعالی امیدوارکننده ای با توجه به ساختار شیمیایی خود دارند. هدف از مطالعة حاضر، ارزیابی تأثیر وزن مولکولی تولیدی با استفاده از سیستم فراپالایش غشایی بر ویژگی های ضداکسایشی فوکوئیدان هیدرولیزشده جلبک قهوهای Nizamuddinia zanardinii بود. پس از حذف رنگدانه ها و ترکیبات با وزن مولکولی پایین، فوکوئیدانخام استخراج شده در دمای ۱۰۰ درجة سانتی گراد به مدت ۲۰ دقیقه (FH20) توسط 0/1 نرمال اسید هیدروکلریک تحت هیدرولیز قرارگرفت. سپس FH20 با استفاده از سیستم فراپالایش غشایی با غشای ۲، ۱۰، ۳۰، ۱۰۰ کیلودالتون فراکسیونگیری شد. میانگین وزن مولکولی فراکسیون ها به ترتیب 533/7، 39/2، 12/4 و 4/6 ×۱۰3 گرم/مول در KDa >100،KDa 30-100، KDa 10-30 و KDa 2-10 بود. پس از تفکیک براساس وزن مولکولی، فراکسیون های بهدست آمده نسبت به FH20، به میزان قابل توجهی قادر به مهار رادیکال آزاد DPPH(37/69-05/85 درصد)، رادیکال آزاد کاتیونی ABTS (55/43-65/89 درصد) و احیاء یون Fe3+ (جذب 0/07-0/72) بود. در ایـن میـان، فراکسیون KDa ۲-۱۰ بیشترین پتانسیل را در مهار رادیکال آزاد DPPH (74/12-85/05 درصد)، رادیکال آزاد کاتیونی ABTS (75/16-89/65 درصد) و احیاء یون آهن Fe3+ (جذب 0/21- 0/72) دارا بود. به طورکلی، نتایج این مطالعه نشان داد تغییر وزن مولکولی فوکوئیدان می تواند سبب افزایش قابل توجه فعالیت ضداکسایشی شود. | ||
کلیدواژهها | ||
فراپالایش؛ وزن مولکولی؛ ضداکسایشی؛ ترکیبات غذا دارو؛ Nizamuddinia zanardinii؛ هیدرولیز | ||
مراجع | ||
Babaie, M., 2020. Proteins separation and purification methods with focus on chromatography: A review study. Journal of Ardabil University of Medical Sciences 20(2), 151-175. Barrow, C., Shahidi, F., 2007. Marine Nutraceuticals and Functional Foods: CRC Press. Bi, D., Yu, B., Han, Q., Lu, J., White, W. L., Lai, Q., Cai, N., Luo, W., Gu, L., Li, S., Xu, H., Hu, Z., Nie, S., Xu, X., 2018. Immune activation of RAW264. 7 macrophages by low molecular weight fucoidan extracted from New Zealand Undaria pinnatifida. Journal of Agricultural and Food Chemistry 66(41), 10721-10728. Bishop, W.M., Zubeck, H.M., 2012. Evaluation of microalgae for use as nutraceuticals and nutritional upplements. Journal of Food and Nutrition Sciences 2(5), 1-6. Borazjani, N.J., Tabarsa, M., You, S., Rezaei, M., 2018. Purification, molecular properties, structural characterization, and immunomodulatory activities of water-soluble polysaccharides from Sargassum angustifolium. International Journal of Biological Macromolecules 109(1), 793-802. Chandini, S.K., Ganesan, P., Bhaskar, N., 2008. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry 107(2), 707-713. Costa, E.V., Pinheiro, M.L.B., Barison, A., Campos, F.R., Salvador, M.J., Maia, B.H., L.N.S., Cabral, E.C., Eberlin, M.N., 2010. Alkaloids from the bark of Guatteria hispida and their evaluation as antioxidant and antimicrobial agents. Natural Products 73(6), 1180-1183. Costa, L.S., Fidelis, G.P., Cordeiro, S.L., Oliveira, R.M., Sabry, D.D.A., Câmara, R.B.G., Rocha, H.A.O., 2010. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy 64(1), 21-28. Hou, Y., Wang, J., Jin, W., Zhang, H., Zhang, Q., 2012. Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights. Carbohydrate Polymers 87(1), 153-159. Hwang, P.A., Hung, Y.L., Phan, N.N., Hieu, B.T.N., Chang, P.M., Li, K.L., Lin Y.C., 2016. The in vitro and in vivo effects of the low molecular weight fucoidan on the boneosteogenic differentiation properties, Cytotechnology 68, 1349-1359. Khajavi, S., Tabarsa, M., Ahmadi, H., Rezaei, M., 2021. Relationship evaluation of molecular weight and antioxidant and alpha amylase inhibition properties of fucoidan and alginate from brown seaweed Padina pavonica in comparison with polysaccharides from Flixweed and Fennel. Journal of Fisheries Science and Technology 10(1), 31-45. pKim, S.K., Wijesekara, I., 2010. Development and biological activities of marine-derived bioactive peptides: A review. Journal of Functional Foods 2(1), 1-9. Kumar, K.S., Ganesan, K., Rao, P.V.S., 2008. Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty - An edible seaweed. Food Chemistry 107(1), 289-295. Kumar, C.S., Ganesan, P., Suresh, P., Bhaskar, N., 2008. Seaweeds as a source of nutritionally beneficial compounds-A review. Journal of Food Science and Technology 45(1), 1-13. Lim, S., Choi, J.I., Park, H., 2015. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis. Radiation Physics and Chemistry 109(1), 23-26. Mohamed, S., Hashim, S.N., Rahman, H.A., 2012. Seaweeds: A sustainable functional food for complementary and alternative therapy. Trends in Food Science & Technology 23(2), 83-96. Mousavi, N.S., Tabarsa, M., Ahmadi, H., 2022. Evaluation of relationship between molecular weight and antioxidant properties of hydrolyzed fucoidan from brown seaweed Nizamuddinia zanardinii. Fisheries Science and Technology 11(2), 153-164. Murata, M. Nakazoe, J.-I., 2001. Production and use of marine algae in Japan. Japan Agricultural Research Quarterly: JARQ 35(4), 281-290. Norheim, F., Gjelstad, I.M., Hjorth, M., Vinknes, K.J., Langleite, T.M., Holen, T., Jensen, J., Dalen, K.T., Karlsen, A.S., Kielland, A., 2012. Molecular nutrition research-the modern way of performing nutritional science. Nutrients 4(12), 1898-1944. Oyaizu, M., 1986. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics 44(6), 307-315. Plaza, M., Cifuentes, A., Ibáñez, E., 2008. In the search of new functional food ingredients from algae. Trends in Food Science & Technology 19(1), 31-39. Pomponi, S. A., 1999. The bioprocess-technological potential of the sea. Journal of Biotechnology 70(1), 5-13. Qi, H., Zhao, T., Zhang, Q., Li, Z., Zhao, Z. and Xing, R., 2005. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). Journal of Applied Phycology 17(7), 527-534. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical and Biology Medicine 26(9-10), 1231-1237. Rodriguez-Jasso, R.M., Mussatto, S.I., Pastrana, L., Aguilar, C.N., Teixeira, J.A., 2011. Microwave-assisted extraction of sulfated polysaccharides (Fucoidan) from brown seaweed. Carbohydrate Polymers 86(3), 1137-1144. Shahidi, F., 2009. Nutraceuticals and functional foods: Whole versus processed foods. Trends in Food Science & Technology 20(9), 376-387. Shan, X., Liu, X., Hao, J., Cai, C., Fan, F., Dun, Y., Zhao X., Liu, X., Li, C. and Yu G., 2016. In vitro and in vivo hypoglycemic effects of brown algal fucoidans. International Journal of Biological Macromolecules 82(1), 249-255. Story, M., Kaphingst, K. M., Robinson-O'Brien, R.,Glanz, K., 2008. Creating healthy food and eating environments: Policy and environmental approaches. Annual Review of Public Health 29(7), 253-272. Tabarsa, M., Dabaghian, E.H., You, S., Yelithao, K., Cao, R., Rezaei, M., Alboofetileh, M., Bita, S., 2020. The activation of NF-κB and MAPKs signaling pathways of RAW264. 7 murine macrophages and natural killer cells by fucoidan from Nizamuddinia zanardinii. International Journal of Biological Macromolecules 148(1), 56-67. Wang, J., Zhang, Q., Zhang, Z., Song, H., Li P., 2010. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules 46(1), 6-12. Wijesekara, I., Pangestuti, R., Kim, S.-K., 2011. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers 84(1), 14-21. Wijesinghe, W., Jeon, Y.J., 2012. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydrate Polymers 88(1), 13-20. Wu, G.J., Shiu, S.M., Hsieh, M.C., Tsai, G. J., 2016. Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum Cristaefolium. Food Hydrocolloids 53(2), 16-23. Yuan, Y., and Macquarrie, D. 2015. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydrate Polymers 129(20), 101-107. Zhou, G., Sun, Y., Xin, H., Zhang, Y., Li, Z. And Xu, Z., 2004. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacological Research 50(1), 47-53. | ||
آمار تعداد مشاهده مقاله: 239 تعداد دریافت فایل اصل مقاله: 240 |