تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,031 |
تعداد مشاهده مقاله | 125,501,163 |
تعداد دریافت فایل اصل مقاله | 98,764,484 |
انتقال بینسلولی و دوربرد RNA در گیاهان | ||
علمی-ترویجی گیاه پزشک | ||
مقاله 9، دوره 23، شماره 1 - شماره پیاپی 6، خرداد 1402، صفحه 29-43 اصل مقاله (1.23 M) | ||
نوع مقاله: مقاله علمی-ترویجی | ||
شناسه دیجیتال (DOI): 10.22059/giahpzshsj.2023.91674 | ||
نویسنده | ||
مهدی قربانی* | ||
گروه زراعت و اصلاح نباتات، دانشکده علوم مهندسی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران | ||
چکیده | ||
گیاهان هر روز در معرض عوامل متعدد محیطی قرار میگیرند، بنابراین برنامهریزی مجدد دقیق برای برقراری تعادل بین پاسخ به تنش و فرآیندهای رشد و نمو گیاه ضروری است. در گیاهان عالی، اسیدهای ریبونوکلئیک (RNAها) میتوانند بین سلولها، بافتها و همچنین در مسافتهای طولانی از طریق آوند آبکش حرکت کنند. تمام کلاسهای RNA در نمونههای آوند آبکش یافت شده است، اما تاکنون سازوکار چگونگی انتقال RNA به خوبی درک نشده است. نکته قابل توجه این است که RNAهای کوچک و برخی mRNAها میتوانند بهصورت سلول به سلول یا به صورت یکپارچه در گیاه حرکت کنند و به این ترتیب بهعنوان عامل خاموش کننده متحرک در داخل گیاه عمل میکنند. در این مقاله بهطور خلاصه به دستهبندی RNAهای متحرک، کارکردهای زیستی انتقال RNA از جمله نقش آنها در ایمنی و ریختزایی گیاه، سازوکارهای انتقال از جمله: توالیهایی که انتقال RNA را تسهیل میکنند، پروتئینهای متصل شونده به RNA، انتقال RNA با تنظیم نفوذپذیری پلاسمودسماتا، مسیرهای جایگزین بالقوه در انتقال RNA مثل شبه-اگزوزومهای گیاهی خواهیم پرداخت. درک عمیقتر این اطلاعات زیستی برای گشودن مسیرهای جدید و جالب برای برنامههای کاربردی اصلاحی از جمله شناسایی و توسعه محصولات مقاوم به تنشهای زیستی و غیرزیستی بسیار مهم است. | ||
کلیدواژهها | ||
آوند آبکش؛ پلاسمودسماتا؛ RNA متحرک | ||
مراجع | ||
Buhtz, A., Pieritz, J., Springer, F., and Kehr, J. (2010). Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC plant biology 10, 64. Cai, Q., Qiao, L., Wang, M., He, B., Lin, F.-M., Palmquist, J., Huang, S.-D., and Jin, H. (2018). Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360, 1126-1129. Ghate, T. H., Sharma, P., Kondhare, K. R., Hannapel, D. J., and Banerjee, A. K. (2017). The mobile RNAs, StBEL11 and StBEL29, suppress growth of tubers in potato. Plant molecular biology 93, 563-578. Guan, D., Yan, B., Thieme, C., Hua, J., Zhu, H., Boheler, K. R., Zhao, Z., Kragler, F., Xia, Y., and Zhang, S. (2016). PlaMoM: a comprehensive database compiles plant mobile macromolecules. Nucleic acids research, gkw988. Ham, B.-K., and Lucas, W. J. (2017). Phloem-mobile RNAs as systemic signaling agents. Annual review of plant biology 68, 173-195. Haywood, V., Yu, T. S., Huang, N. C., and Lucas, W. J. (2005). Phloem long‐distance trafficking of GIBBERELLIC ACID‐INSENSITIVE RNA regulates leaf development. The Plant Journal 42, 49-68. Hochberg-Laufer, H., Schwed-Gross, A., Neugebauer, K. M., and Shav-Tal, Y. (2019). Uncoupling of nucleo-cytoplasmic RNA export and localization during stress. Nucleic acids research 47, 4778-4797. Kehr, J., and Kragler, F. (2018). Long distance RNA movement. New Phytologist 218, 29-40. Kim, M., Canio, W., Kessler, S., and Sinha, N. (2001). Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293, 287-289. Lin, M.-K., Lee, Y.-J., Lough, T. J., Phinney, B. S., and Lucas, W. J. (2009). Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Molecular & Cellular Proteomics 8, 343-356. Liu, L., and Chen, X. (2018). Intercellular and systemic trafficking of RNAs in plants. Nature plants 4, 869. Lucas, W. J., Bouché-Pillon, S., Jackson, D. P., Nguyen, L., Baker, L., Ding, B., and Hake, S. (1995). Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270, 1980-1983. Mlotshwa, S., Voinnet, O., Mette, M. F., Matzke, M., Vaucheret, H., Ding, S. W., Pruss, G., and Vance, V. B. (2002). RNA silencing and the mobile silencing signal. The Plant Cell 14, S289-S301. Mosa, K. A., Ismail, A., and Helmy, M. (2017). "Plant stress tolerance: an integrated omics approach," Springer. Ostendorp, A., Pahlow, S., Krüßel, L., Hanhart, P., Garbe, M. Y., Deke, J., Giavalisco, P., and Kehr, J. (2017). Functional analysis of Brassica napus phloem protein and ribonucleoprotein complexes. New Phytologist 214, 1188-1197. Peña, E. J., and Heinlein, M. (2022). In Vivo Visualization of Mobile mRNA Particles in Plants Using BglG. In "Plasmodesmata", pp. 411-426. Springer. Rutter, B. D., and Innes, R. W. (2017). Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiology 173, 728-741. Vaucheret, H. (2006). Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes & development 20, 759-771. Xiao, J., Feng, S., Wang, X., Long, K., Luo, Y., Wang, Y., Ma, J., Tang, Q., Jin, L., and Li, X. (2018). Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ 6, e5186. Zhang, W., Thieme, C. J., Kollwig, G., Apelt, F., Yang, L., Winter, N., Andresen, N., Walther, D., and Kragler, F. (2016). tRNA-related sequences trigger systemic mRNA transport in plants. The Plant Cell 28, 1237-1249.
| ||
آمار تعداد مشاهده مقاله: 180 تعداد دریافت فایل اصل مقاله: 219 |