- Amani, M., S. Parsian, S. MirMazloumi and O. Aieneh. 2016. Two new soil moisture indices based on the NIR-red triangle space of Landsat-8 data. International journal of applied earth observation and geoinformation. 73: 176-186(in Persian).
- Asakereh, H. 2004. Spatial change modeling of climatic data a case study: annual precipitation of esfahan province. Geographical research. 19(74): 213_ 232 (in Persian).
- Asakereh H. and R. razmi. 2018. Spatial modeling of summer precipitation in North-west of Iran. Researches in Geographical Sciences, 18 (50):155-178 (in Persian).
- Asakereh, H. 2011. Fundamentals of Statistical Climatology. Zanjan University Press. 545
- Asakereh, H. and Z. SeifiPour. 2013. Spatial Modeling of Annual Precipitation in Iran. Geography and Development Iranian Journal.10 (29): 15-30 (in Persian).
- Babaeian, E., M. Homaee and A. Norouzi. 2013. Estimation of surface soil moisture using ENVISAT ASAR radar images. Water Research in Agriculture.27 (4):622-611 (in Persian).
- Brown, S., L.Versace.V. Laurenson. D. Ierodiaconou. J. Fawcett and S. Salzman. 2012. Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression. Environmental Modeling and Assessment.17 (3): 241-254.
- Erfanian, m. Alijanpour, A. and M. Hosseink. 2013. An Introduction to Multiple Regression Methods (GWR and OLS) for Modeling the Land Use Effects on Water Quality. Extension and Development of watershed management, 1:18-29 (in Persian).
- Falloon, P., D. Bebber. J. Bryant. M. Bushell. A. Challinor. J. Dessai and A. K. Koehler. 2015. Using climate information to support crop breeding decisions and adaptation in agriculture. World Agriculture. 5(1): 25-43.
- Gao, L., M. Shao. X. Peng and D. Shey. 2015. Spatio-temporal variability and temporal stability of water contents distributed within soil profiles at a hillslope scale. Catena. 132: 29-36.
- Kerlinger, p. 2005. Multiple regressions in behavioral research. Translated by hassan sarai. Samt Press. 534 pages.
- Khanmohammadi, F., M. Homaee and A. 2015. Soil moisture estimating with NDVI and land surface temperature and normalized moisture index using MODIS images. Journal of Soil and Water Resources Conservation. 4: 37-45 (in Persian).
- Koohbanani, H. and R.,2019. Mapping the Moisture of Surface Soil Using Landsat 8 Imagery (Case Study: Suburb of Semnan City). Geography and Sustainability of Environment, 8 (3): 65-77 (in Persian).
- Lai, X., Q. Zhu. Z. Zhou and K. Liao. 2017. Influences of sampling size and pattern on the uncertainty of correlation estimation between soil water content and its influencing factors. Journal of hydrology. 555: 41-50.
- Lee, Y., C. Jung and S. Kim. 2019. Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data. Agricultural water management, 213:580-593.
- Lu, B., P. Harris. M. Charlton and C. Brunsdon. 2015. Calibrating a geographically weighted regression model with parameter-specific distance metrics. Procedia Environmental Sciences. 26:109-114.
- Luca, C., B. Si and R. Farrell. 2007. Upslope length improves spatial estimation of soil organic carbon content. Canadian journal of soil science. 87(3): 291-300.
- Mekonnen, F. 2009. Satellite remote sensing for soil moisture estimation: Gumara catchment. Ethiopia Satellite remote sensing for soil moisture estimation: Gumara catchment. Ethiopia. Thesis of Geo-information Science and Earth Observation, Specialisation: (Integrated Watershed Modelling and Management). WREM Department of ITC. Enschede, the Netherlands. 127
- Saghafian, B. A. Shokoohi and T. Raziei. 2003. Drought spatial analysis and development of severity-duration-frequency curves for an arid region. International Association of Hydrological Sciences, Publication, 278: 305-311.
- Sharma, V., A. Irmak. I. Kabengeand S. Irmak. 2011. Application of GIS and geographically weighted regression to evaluate the spatial non-stationarity relationships between precipitations vs. irrigated and rainfed maize and soybean yields. Transactions of the ASABE. 54(3): 953-972.
- Tabatabaeenejad, A., M. Burgin. X. Duan and M. Moghaddam. 2014. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: First AirMOSS results. IEEE Transactions on Geoscience and Remote Sensing. 53(2): 645-658.
- Tu, L. 2019. Downscaling SMAP Soil Moisture Data Using MODIS Data. Department of Geography and Anthropology. Master of Science (MS). 219pages.
- Usman, U., L. Aliyu and M. K. Aminu. 2015. Study of the Geographically Weighted Regression Application on Climate Data. Mathematical Theory and Modeling. 5:8-21.
- Van Loon, F., K.Stahl. G. Baldassarre. J. Clark .S. Rangecroft. N. Wanders and R. Uijlenhoet. 2016. Drought in a human-modified world: reframing drought definitions understanding and analysis approaches. Earth Syst. 20(9): 3631–3650.
- Vereecken, H., A. Huisman. Y. Pachepsky. C. Montzka. J. Van Der Kruk. H. Bogena and J. Vanderborght. 2014. on the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology. 516: 76-96.
- Wang, Q., J. Ni and J. Tenhunen. 2005. Application of geographically‐weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global ecology and biogeography. 14(4): 379-393.
- Xu, G., T. Zhang. Z. Li. P. Cheng and S. Cheng. 2017. Temporal and spatial characteristics of soil water content in diverse soil layers on land terraces of the Loess Plateau. China. Catena. 158: 20-29.
- Yagci, L., L.Di and M. Deng. 2013. The effect of land-cover change on vegetation greenness-based satellite agricultural drought indicators: a case study in the southwest climate division of Indiana. USA. International journal of remote sensing. 34(20): 6947-6968.
- Yoshioka, M., S.Takakura. T. Ishizawa and N. Sakai. 2015. Temporal changes of soil temperature with soil water content in an embankment slope during controlled artificial rainfall experiments. Journal of Applied Geophysics. 114: 134-145.
|