- Abbaszadeh Afshar, M., Behmanesh, J., Khalili, K., & Nazeri Tahroudi, M. (2017). Evaluation of the Combined AR-ARCH and GAR-ARCH Models in Modeling Rivers Flow Rate (Case Study: Zarineh River in West Azerbaijan). Journal of Water and Soil Conservation, 23(6), 181-197. (In Persian).
- Ahmadianfar, I., Jamei, M., & Chu, X. (2020). A novel hybrid wavelet-locally weighted linear regression (W-LWLR) model for electrical conductivity (EC) prediction in surface water. Journal of Contaminant Hydrology, 232, 103641.
- Ahmadianfar, I., Shirvani-Hosseini, S., He, J., Samadi-Koucheksaraee, A., & Yaseen, Z. M. (2022). An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction. Scientific Reports, 12(1), 1-34.
- Bollerslev,, Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance. A selective review of the theory and empirical evidence. Journal of Econometrics, 52, 5-59.
- Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
- Duan, J. C. (1996). A unified theory of option pricing under stochastic volatility-from GARCH to diffusion. Hong Kong University of Science and Technology.
- Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987-1007.
- Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning. New York: Springer series in statistics.
- Hintze, J. L., & Nelson, R. D. (1998). Violin plots: a box plot-density trace synergism. The American Statistician, 52(2), 181-184.
- Jafarzadeh, A., Pourreza-Bilondi, M., Khashei Siuki, A., & Ramezani Moghadam, J. (2021). Examination of various feature selection approaches for daily precipitation downscaling in different climates. Water Resources Management, 35(2), 407-427.
- Khashei-Siuki, A., Shahidi, A., Ramezani, Y., Nazeri Tahrudi, M. (2020). Forecasting the groundwater monitoring network using hybrid time series models (Case study:Nalochay). Journal of Water and Soil Conservation, 27(3), 85-103. (In Persian).
- Laux, P., Vogl, S., Qiu, W., Knoche, H. R., & Kunstmann, H. (2011). Copula-based statistical refinement of precipitation in RCM simulations over complex terrain. Journal of Hydrology and Earth System Sciences, 15(4), 2401-2419.
- Moffat, I. U., Akpan, E. A., & Abasiekwere, U. A. (2017). A time series evaluation of the asymmetric nature of heteroscedasticity: an EGARCH approach. International Journal of Statistics and Applied Mathematics, 2(6), 111-117.
- Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10(3), 282-290.
- Nazeri Tahroudi, M., & Khalili, K. (2015). Comparing Combined Arma-Parch and Arma-Arch Models for Modeling Peak Flow Discharge (Case Study: Siminehrood River in The West Azarbaijan Province). Water and Soil Science (Agricultural Science), 25(4/1), 113-127. (In Persian).
- Nazeri Tahroudi, M., Ramezani, Y., De Michele, C., & Mirabbasi, R. (2021). Flood routing via a copula-based approach. Hydrology Research, 52(6), 1294-1308.
- Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347-370.
- Ramezani, Y., Nazeri Tahroudi, M., & Ahmadi, F. (2019). Analyzing the droughts in Iran and its eastern neighboring countries using copula functions. Journal of the Hungarian Meteorological Service, 123(4), 435-453.
- Ravansalar, M., & Rajaee, T. (2015). Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model. Environmental Monitoring and Assessment,187(6),1-16.
- Salami, E. S., & Ehteshami, M. (2015). Simulation, evaluation and prediction modeling of river water quality properties (case study: Ireland Rivers). International Journal of Environmental Science and Technology, 12(10), 3235-3242.
- Salas, J. D., Delleur, J. W., Yevjevich, V., & Lane, W. L. (1980). Applied Modeling of Hydrologic Time Series. Water Resource Publications, P.O.Box 2841. Littleton, Colorado.80161, U.S.A. 484 P.
- Sayadi Shahraki, A., & Sayadi Shahraki, F. (2019). Simulation of Electrical Conductivity of Behbahan Plain Using ANN and ANN-PSO Models. Journal of Water and Wastewater Science and Engineering, 4(1), 34-41. (In Persian).
- Shahidi, A., Ramezani, Y., Nazeri-Tahroudi, M., & Mohammadi, S. (2020). Application of vector autoregressive models to estimate pan evaporation values at the Salt Lake Basin, Iran. Journal of the Hungarian Meteorological Service, 124(4), 463-482.
- Thakur, A. K., Singh, V. P., & Ojha, C. S. P. (2012). Evaluation of a probabilistic approach to simulation of alkalinity and electrical conductivity at a river bank filtration site. Hydrological Processes, 26(22), 3362-3368.
- Tse, Y. K., & Tsui, A. K. C. (2002). A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations. Journal of Business & Economic Statistics, 20(3), 351-362.
- Wang, W., Van Gelder, P. H. A. J. M., Vrijling, J. K., & Ma, J. (2005). Testing and modeling autoregressive conditional heteroskedasticity of streamflow processes. Nonlinear processes in Geophysics, 12(1), 55-66.
- Yusof, F., & Kane, I. L. (2013). Volatility modeling of rainfall time series. Theoretical and Applied Climatology, 113(1-2), 247-258.
|