تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,506 |
تعداد مشاهده مقاله | 124,125,915 |
تعداد دریافت فایل اصل مقاله | 97,234,089 |
Biplot Analysis of Genotype-Environment Interaction in Rapeseed (Brassica napus L.) in Two Normal and Stress Condition Using the AMMI Model | ||
Desert | ||
مقاله 10، دوره 26، شماره 2، اسفند 2021، صفحه 279-285 اصل مقاله (460.86 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jdesert.2021.321211.1006811 | ||
نویسندگان | ||
Z. Chaghakaboodi1؛ M. Kakaei* 2؛ A. Zebarjadi3؛ D. Kahrizi1؛ A. Karatas4 | ||
1College of Agricultural, Razi University of Kermanshah, Iran | ||
2Assistant Prof. of Agriculture Department, Payame Noor University, PO BOX 19395-4697 -Tehran, Iran, | ||
3College of Agricultural, Razi University of Kermanshah, Iran. | ||
4Department of Horticulture, Faculty of Agriculture, Recep Tayyip Erdogan University, Rize, Turkey | ||
چکیده | ||
The standard yield stability used to measure changes is the potential yield and actual yield of a genotype in different environments. The aim of this research was to evaluate the genotype and environment interaction (GE) and detecting the sustainable genotypes in rapeseed. Also, this study aimed to determine genotypes with stable grain yield using parameters of equivalence (Wi), regression coefficient (bi), deviations mean square (S2di) and coefficient of variation (CV), (first model), and AMMI model analysis (second model). For this pupose, a field experiments was carried out with 14 winter rapeseed genotypes for two consecutive years in two different irrigation and rainfed. The expriment was performmed in a randomized complete block design with three replications per the environment. Combined analysis of variance showed that difference between the genotype-environment interaction was significant. positive correlation and significant parameters of Wi and S2di showed that both of these parameters can be used independently. According to the AMMI model, the genotypes Geronimo and ARC2 had the highest stability with a high average yield. These genotypes can be used in future breeding programs. | ||
کلیدواژهها | ||
Rapeseed؛ Stability؛ AMMI model؛ Biplot analysis | ||
مراجع | ||
Reference Becker HC, Leon J. 1988. Stability analysis in plant breeding. Plant breeding, 101(1);1-23. Crossa J, Gauch JR, Zobel HG. 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop science, 30(3);493-500. Eberhart ST, Russell WA. 1966. Stability parameters for comparing varieties 1. Crop science, 6(1);36-40. Finlay KW, Wilkinson GN. 1963. The analysis of adaptation in a plant-breeding programme. Australian journal of agricultural research, 14(6);742-754. Francis TR, Kannenberg LW. 1978. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Canadian Journal of Plant Science, 58(4);1029-1034. Lin CS, Binns MR, Lefkovitch LP. 1986. Stability analysis: where do we stand? 1. Crop science, 26(5);894- 900. Shukla GK. 1972. Some statistical aspects of partitioning genotype environmental components of variability. Heredity, 29(2);237-245. Tuck G, Glendining MJ, Smith P, House JI, Wattenbach M. 2006. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass and Bioenergy, 30(3);183-197. Haufe W, Geidel H. 1978. To assess the yield security of varieties and breeding lines. i. definitions, stability parameters and their interpretation possibilities. Z plant breeding . Ahakpaz F, Abdi H, Neyestani E, Hesami A, Mohammadi B, Mahmoudi KN, Abedi-Asl G, Noshabadi MRJ, Ahakpaz F, Alipour H. 2021. Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. Agricultural Water Management, 245;106665. Amiri SR, Deihimfard R, Eyni-Nargeseh H. 2020. Toward dormant seeding of rainfed chickpea as an adaptation strategy to sustain productivity in response to changing climate. Field Crops Research, 247;107674. 285 Chaghakaboodi et al. Balcha A. 2020. Additive main effects and multiplicative interaction and other stability analyses of Tef [Eragrostis tef (Zucc.) Trotter] grain yield. American Journal of Plant Sciences, 11(06);793. Chavarría-Perez LM, Giordani W, Dias KOG, Costa ZP, Ribeiro CAM, Benedetti AR, Cauz-Santos LA, Pereira GS, Rosa JRBF, Garcia AAF, Vieira MLC. 2020. Improving yield and fruit quality traits in sweet passion fruit: Evidence for genotype by environment interaction and selection of promising genotypes. PloS one, 15(5);0232818. Eltaher S, Baenziger PS, Belamkar V, Emara HA, Nower AA, Salem KF, Alqudah AM, Sallam A. 2021. GWAS revealed effect of genotype× environment interactions for grain yield of Nebraska winter wheat. BMC genomics, 22(1);1-14. Falcon CM, Kaeppler SM, Spalding EP, Miller ND, Haase N, AlKhalifah N, Bohn M, Buckler ES, Campbell DA, Ciampitti I, Coffey L. 2020. Relative utility of agronomic, phenological, and morphological traits for assessing genotype‐by‐environment interaction in maize inbreds. Crop Science, 60(1);62-81. Hajjarpoor A, Kholová J, Pasupuleti J, Soltani A, Burridge J, Degala SB, Gattu S, Murali TV, Garin V, Radhakrishnan T, Vadez V. 2021. Environmental characterization and yield gap analysis to tackle genotype-by-environment-by-management interactions and map region-specific agronomic and breeding targets in groundnut. Field Crops Research, 267;108160. Happ MM, Graef GL, Wang H, Howard R, Posadas L, Hyten DL. 2021. Comparing a Mixed Model Approach to Traditional Stability Estimators for Mapping Genotype by Environment Interactions and Yield Stability in Soybean [Glycine max (L.) Merr.]. Frontiers in plant science, 12;542. Islam SS, Anothai J, Nualsri C, Soonsuwon W. 2020. Analysis of genotype-environment interaction and yield stability of Thai upland rice ('Oryza sativa'L.) genotypes using AMMI model. Australian Journal of Crop Science, 14(2);362-370. Mengistu SB, Mulder HA, Benzie JA, Khaw HL, Megens HJ, Trinh TQ, Komen H. 2020. Genotype by environment interaction between aerated and non-aerated ponds and the impact of aeration on genetic parameters in Nile tilapia (Oreochromis niloticus). Aquaculture, 529;735704. Popović V, Ljubičić N, Kostić M, Radulović M, Blagojević D, Ugrenović V, Popović D, Ivošević B. 2020. Genotype× Environment Interaction for Wheat Yield Traits Suitable for Selection in Different Seed Priming Conditions. Plants, 9(12);1804. Reckling M, Ahrends H, Chen TW, Eugster W, Hadasch S, Knapp S, Laidig F, Linstädter A, Macholdt J, Piepho HP, Schiffers K. 2021. Methods of yield stability analysis in long-term field experiments. A review. Agronomy for Sustainable Development, 41(2);1-28. Singh B, Das A, Parihar AK, Bhagawati B, Singh D, Pathak KN, Dwivedi K, Das N, Keshari N, Midha RL, Kumar R. 2020. Delineation of Genotype-by-Environment interactions for identification and validation of resistant genotypes in mungbean to root-knot nematode (Meloidogyne incognita) using GGE biplot. Scientific reports, 10(1);1-14. Wang Y, Bo K, Gu X, Pan J, Li Y, Chen J, Wen , Ren Z, Ren H, Chen X, Grumet R. 2020. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Horticulture research, 7(1);1-20. Yohane EN, Shimelis H, Laing M, Mathew I, Shayanowako A. 2021. Genotype-by-environment interaction and stability analyses of grain yield in pigeonpea [Cajanus cajan (L.) Millspaugh]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, pp.1-11. | ||
آمار تعداد مشاهده مقاله: 384 تعداد دریافت فایل اصل مقاله: 438 |