- Kotz S, Lumelskii Y, Pensky M. The stress-strength model and its generalization: theory and applications. World Scientific, Singapore. 2003.
- Ventura L, Racugno W. Recent advances on Bayesian inference for . Bayesian Anal. 2011;2(6):1-18.
- Rezaei S, Tahmasbi R, Mahmoodi M. Estimation of for generalized Pareto distribution. J Stat Plan Inference. 2010;140:480–494.
- Hassan AS, Nagy HF, Muhammed HZ, Saad MS. Estimation of multicomponent stress-strength reliability following Weibull distribution based on upper record values. J. Taibah Univ. Sci. 2020;1(14):244-253.
- Almarashi AM, Algarni A, Nassar M. On estimation procedures of stress-strength reliability for Weibull distribution with application. PLoS ONE. 2020;15(8):e0237997.
- Mirjalili SM, Torabi H, Nadeb H, Bafekri SF. Stress-strength reliability of Exponential distribution based on type-I progressively hybrid censored samples. Statistical research and training center. 2016;13:89–105.
- Kazemi MR. Interval estimation of stress-strength reliability parameter for exponential-inverted exponential model: Frequentist and Bayesian approaches. J. stat. model. theory appl. In Press, 2020.
- Khalifeh A, Mahmoudi E, Chaturvedi A. Sequential fixed-accuracy confidence intervals for the stress–strength reliability parameter for the exponential distribution: two-stage sampling procedure. Comput. Stat. 2020;35:1553–1575.
- Krishnamoorthy K, Mathew T, Mukherjee S. Normal-Based Methods for a Gamma Distribution: Prediction and Tolerance Intervals and Stress-Strength Reliability. Technometrics. 2012;50:69-78.
- Huang K, Mi J, Wang Z. Inference about reliability parameter with gamma strength and stress. J. Stat. Plan. Inference. 2012;142(4):848-854.
- Chen P, Ye Z. Approximate Statistical Limits for a Gamma Distribution. J. Qual. Technol. 2017;49:64-77.
- Xia ZP, Yu JY, Cheng LD, Liu LF, Wang WM. Study on the Breaking Strength of Jute Fibers Using Modified Weibull Distribution. Compos. - A: Appl. Sci. Manuf. 2009;40:54-59.
- Saracoglu B, Kinaci I, Kundu D. On estimation of R = P(Y < X) for exponential distribution under progressive type-II censoring. J. Stat. Comput. Simul. 2012;82(5),729-744.
- Bhattacharyya GK, Johnson RA. Estimation of reliability in a multicomponent stress-strength model. J. Am. Stat. Assoc. 1974;69:966-970.
- Eryilmaz S. Multivariate stress-strength reliability model and its evaluation for coherent structures. J. Multivar. Anal. 2008;99:1878-1887.
- Pakdaman Z, Ahmadi J. Stress- Strength reliability for in exponential case. J. Turk. Stat. Assoc. 2013;3(6):92-102.
- Rao GS, Kantam RRL. Estimation of reliability in multicomponent stress-strength model: Log-logistic distribution. Electron. J. Appl. Statist. Anal. 2010;2(3):75-84.
- Dey S, Mazucheli J, Anis MZ. Estimation of reliability of multicomponent stress-strength for the generalized logistic distribution. Stat. Methodol. 2016;15:73-94.
|