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Abstract 
In this article, a new proper and favorite stress-strength parameter has been 

introduced. The maximum likelihood and uniformly minimum variance unbiased 
estimators of the purposed parameter have been derived for the Exponential distribution. 
Moreover, the nonparametric estimator of this parameter has also been obtained as well 
as some important properties of this estimator. A simulation study and the analysis of a 
real data set have been done for illustrative purposes.  
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Introduction 
The well-known stress-strength parameter denoted 

by , is defined as  
 = ( > ).                                                  (1.1) 
After the first definition, its application had a rapid 

growth in different areas such as reliability, biostatistics, 
quality control and engineering. In a clinical study, Kotz 
et al. [1], have considered  and  as the outcomes of a 
treatment and a control group respectively, in this case 
the quantity (1 − ) measures the treatment efficiency. 
Some applications of  have been studied in Ventura 
and Racugno [2]. In reliability context,  is the strength 
of a component which is subject to the stress . 
Therefore,  is the chance that the system fails and (1 − ) measures the probability of system 
performance. See Rezaei et al. [3] for a list of customary 
distributions in the study of .  

By the time lapse, more modern and advancer 
methods for estimating the stress-strength parameter 
have been brought to the literature. For instance, Hassan 
et al. [4] have estimated this parameter based on upper 
record values where Almarashi, et al. [5] have applied 

some different procedures for the systems with Weibull 
distributed components.   

In many situations, the inspector has the valuable 
information that  and  are greater than some real-
valued levels,  and , particularly, for  and  as the 
lifetimes of two components of a system. Suppose that 
by using the above mentioned information, it is desired 
to have some inferences about = ( > ).  For 
clarification, consider a car with two active components, 
an engine and a brakes whose lifetimes are denoted by  
and , respectively. It is obvious that before the car 
starts, it works correctly and with probability (1.1), iff { > }. If the car has been driven for one hour, a 
reasonable measure of reliability of the car performance, 
is ( > | > 1, > 1). Furthermore, consider the 
situation that the engine has been switched on 15 
minutes before driving, then the appropriate measure of 
reliability is ( > | > 1, > 1.25). Thus, we have 
been motivated to introduce the conditional stress-
strength parameter denoted by | , .  

There are some distributions which are more 
customary in calculating and estimation of the 
parameter , these distributions will have been used for 
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studying | ,  , as well. The most well-known 
distribution in lifetime studies is Exponential, which in 
studying | ,  has been considered at first. For different 
extensions of the reliability measure see Mirjalili et al. 
[6], Kazemi [7], Khalifeh et al. [8]. We also compute | ,  for Gamma distribution very briefly. For some 
studies on parameter  for Gamma distributed 
components see Krishnamoorthy et al. [9], Huang et al. 
[10] and Chen and Ye [11].  

This paper is organized as follows. A general 
formula for computing the conditional stress-strength 
parameter is presented in Section 2. This section also 
includes the study and estimation of | ,  for several 
special and usual situations e.g., in the case of   
components, Exponential and Gamma distributions, as 
well as some nonparametric inferences. Certain 
simulation study and parameter estimation for a real 
data set have been carried out in Section 3. Finally, 
Section 4 is devoted to some practical extensions of R 
and | ,  . 

The numerical calculations and corresponding 
programs has been written by the R software version 
4.1.0. 

 
Conditional Stress-strength Parameter 

The conditional stress-strength parameter is defined 
as  | , = ( > | > , > ).                        (2.1) 

Note that the usual  is an special case of this 
quantity for = = −∞. 

As the first task, a general formula for computing 
(1.2) will have been presented.  

 
Proposition 1: suppose that X and Y are two 

independent continuous random variables. The 
conditional stress-strength parameter (2.1), may be 
calculated as: 

 | , =( ) ( ) ( ) ( )  ( )                               =( ) ( ) ( ) ( )  ( )                               <( ) ( ) ( ) ( )( )  ( )                    > ,       

                                                                        (2.2) 
where . ( ) = 1 − . ( ). 
 
Proof. By definition, | , = ( , , )( , )  , so by 

independence of  and , the dominator may simplified 
as ( > , > ) = ( )  ( ). For computing the 
nominator we have                                                                                                                                                                                        

 ( > , > , > ) = ( , ) ∈ =∬ ( ) ( )   ,  
where = {( , )| > , > , > }. The set  

will be divided to  and  for the cases ≤  
and > ,  as follows: = {( , )| > , > , > },    ={( , )| < < , > }.  

Therefore,  ∬ ( ) ( )   = ( )(1 −( )) = ( ) − ( ) ( ) , 
 and ( ) ( )   

= ( )( ( ) − ( ))= ( ) ( ) − ( ) ( ) 

 which completes the proof. ■ 
Remark 1. By definition (2.1), one may expect that | ,  be an increasing (decreasing) function of the 

arguments ( ). We will verify it for < , in terms of 
:  

   
| , = ( ) ( ) ( ) ( )( )  ( ) =( ) ( ) ( ) ( ) ( ) ( )( ) = | , ( )( ) ≥ 0.   ■ 

In the following corollary, | ,  is computed for 
identically distributed  and . 

Corollary 1. Suppose that the continuous random 
variables  and  are independent and identically 
distributed with pdf (. ) and cdf (. ). Then,  

| , =                                             =( ) ( )                                     <( ) ( )( )                         > .             

                                                                            (2.3)   
 
Proof. By substituting ( ) ( ) = ( ) 

in (2.2), we arrive at (2.3). ■ 
Remark 2. For independent and identically 

distributed  and , by using (2.3) it is immediate that: 
 | , ; < | , < | , ; .                         ■                       

(2.4) 
From statistical point of view, (2.4) seems to be 

rational. The values of | ,  has been computed for 
some well-known continuous distributions and various 
values of  and . The results have been figured out in 
the Table 1, which confirm (2.4) as was expected.  
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Estimation for Exponential Distribution 
In this subsection, the measure (2.2) has been 

evaluated for Exponentially distributed components. 
First of all, the multivariate Delta method has been 
recalled by the following lemma. 

Lemma 1.  Suppose that { }  be a sequence of 
random vectors where →   ( , ) in distribution. 
Also let ( ): →  be continuous in the first partial 
derivatives and =   > 0, where = ( ). 
Then, ( ) ( ) →  (0, 1).   ■   

Example 1: suppose that X and Y are two 
independent exponential random variables with means 

 and , respectively. Then,  

 ( ) ( ) = ( ) −  ( ). 
 Thus, the corresponding stress-strength parameter 

expressed in equation (2.2) is  

| , =                                                 = ( )                              <1 −  ( )                      > .     

                                                                        (2.5) 
 
Let , … , ~ ( ) and , … , ~ ( ), the 

MLE’s for parameters have been denoted by = ,  = . Since MLE’s are invariant, the MLE of (2.5) 
will become 

| , =                                                 = ( )                              <1 −  ( )                      > .     

                                                                         (2.6) 
 
For  = ( , ) , = ( , )  and = ( ) as 

the inverse of Fisher’s information  ( ),  we have → ( , ), as  and  tend to infinity and by the 
assumption that →  for some 0 < < +∞. In 
Lemma 1, calculate ,  let = , and  (∙) as below:  

  ( ) = 00 , = 00 ,   ( , ) =                                                = ( )                              <1 −  ( )                      > .    

 
The partial derivatives of (∙) will become: ( , ) =

( )                                                                     =
( )  ( )(1 + ( − )( + ))       <

( )  ( )                                                     >   

( , ) =
( )                                                                         =
( )  ( )                                                     <
( )  ( )(1 + ( − )( + ))         >   

 
The computation of    for = ( , ) , ( , ) results in      = ( , ) + ( , ) .                     
                                                                    (2.7) 
 
For the cases that = , <  and > , denote 

(2.7) by σ , σ  and σ  , respectively. After some 
calculations we have    σ = ( ) ,                                               (2.8) σ = ( )  ( ) ( ( )( )) + ,   

                                                                             (2.9) 
and σ = ( )  ( ) ( ( )( )) + .   
                                                                           (2.10) 
 
Finally, we arrive at the following asymptotically 

normalized estimators of | , : 

Table 1. | ,  for some identically distributed variables. For beta distribution the values of  and  have been divided to 10. 
Distribution/(a,b) (1,2) (2,5) (3,1) (7,4) ( , ) 0.072 6.3e-06 0.99 1 ( , . ) 0.47 0.3 0.59 0.76 ( , )/ ÷  0.49 0.44 0.51 0.65 ( , ) 0.28 0.16 0.82 0.78 
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| , | , → (0,1)                               =| , | , → (0,1)                               <| , | , → (0,1)                               >   

                                                                           (2.11) 
By using the equations in (2.11), some 100(1 − )% 

asymptotic confidence interval of | ,  may be 
constructed as below: | , ∈ ( | , −  σ  , | , +  σ )              =| , ∈ ( | , −  σ  , | , +  σ )               <| , ∈ ( | , −  σ  , | , +  σ )                 >           

                                                                                 (2.12) 
 

In Equation (2.12), σ , = 1,2,3 are the analogues of σ , = 1,2,3 in Equations (2.8)-(2.10), which are 
obtained by substituting  and  instead of  and 

.■   
At this moment, we arrive at evaluating the 

Uniformly Minimum Variance Unbiased Estimator 
(UMVUE) of conditional reliability measure for 
Exponential distributions, given by (2.5).  

 
Theorem 1. Suppose that , … ,  and , … ,  

are two independent random samples from Exponential 
distributions with parameters  and , respectively. 
The UMVUE of the quantity (2.5) is given by  | , =( )  ( , , , )  ( , , , , , )  ,                                           ≤ < ≤( )  ( , , , ) ( , , , , , )  ,                                           ≤ ≤ ≤0  ,                                                                           < ≤ <1 − + ( )  ( , , , )  ( , , , , , ) ,           < ≤ <1                                                                             < ≤ <1 − ( )  ( , , , )  ( , , , , , )   ,                                 < < ≤                                                       >     <

    

                                                                          (2.13) 
 
where = ∑ ,. = ∑ , ( , , , ) =( − ) ( − )  and ( , , , , , ) =( − ) ( − ) . 
 
Proof. It is well known that ( , ) is complete 

sufficient, so | , = > > , > , ( , ) =, , ( , ), ( , ) .  

Calculating the above probabilities requires the joint 
conditional density function of ( , ) w.r.t. ( , ). 
Independence of -portions from -portions and some 

computation gives: , | , ( , | , ) = ( )( )    (1 −     ) (1 −    )  ,   0 < < , 0 < < .            
Therefore, > , > ( , ) = (1 −     ) (1 −    ) ,  
and 
 > , > , > ( , ) =∬ , | , ( , | , )   ,  
where = {( , )| > , < < , < < }. 

The set  varies by the changes in the order of , ,  
and , as below: = {( , )| < < , < < },  = {( , )| < < , < < }, = {( , )| < < , < < }, = − {( , )| < < , << }, 

 = {( , )| < < , < < }, = {∅}. 
Computing ∬ , | , ( , | , )    for the 

above regions, gives the desired result. ■ 
 
Note that the estimator (2.13) is not a linear 

combination of two statistics  and , so ( | , ) 
does not agree with the Cramer-Rao's lower bound.  

In the special case of = , (2.13) will reduce to the 
following simple form: | , =

  ( ) ( )   ,                        ≤1 −   ( ) ( ) ,                  <         (2.14) 

 
  

Example 2. By Example 1, for Exponential 
distributed components, | , = , i.e.,   | , = . 
In reliability literature this fact is called the memoryless 
property, which is the signature of Exponential 
distributions. Suppose that the random variable ~Gamma(2, ) is independent of ~Gamma(2, ). 
By using the corresponding probability density and 
distribution functions  ( ) =  ,    ( ) = 1 −  ( + 1),   ( ) = , ( ) = 1 −  ( + 1), and some 
calculation we arrive at: | , = ( )( )( ) + + +
( ) .                                                       (2.15)     
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A simple computation gives = ( ) +
( ) , which is completely different from (2.15), 
unless  for = 0. The later is trivial by definition | , = , = 0. ■ 

 
Nonparametric Estimation 

A nonparametric method for estimating | ,  has 
been given in this subsection. In some situations, 
distribution of data is unknown or computing | ,  via 
Proposition 1 is very cumbersome and complicated. In 
comparison to MLE and UMVUE, a method of 
estimation which does not be related on the distribution 
of data, may reveal better results or at least be practical. 
By general formulas of conditional probability and 
independence we have | , = ( , , )( ) ( ) ,                                      (2.16)   

whenever ( > ) ( > ) > 0. For an event ⊆ , the nonparametric estimator of its probability is ( ) = ( )( ), where (∙) is the counting measure. 
Therefore we may estimate (2.16) by | , = ( )( ) ( ),                                              (2.17) 

 
where = {( , )| > , > , > }, ={ | > } and = { | > }.  
Let , … , ~  and , … , ~  are two 

independent random samples. In order to compute 
(2.17) we have   ( ) = ∑ ( − ),    ( ) = ∑ ( − ),   
                                                                             (2.18) 

and ( ) = ∑ ∑ − ( − ) ( − )),    
                                                                                 (2.19) 

where ( ) is 1 for positive  and 0, otherwise.  
More easy and rapid computation may performs, as 

we remove those samples  and  for them ≤  and ≤ , some = 1, … ,  and = 1, … , . The number 
of remaining samples of  and  is ( ) and ( ), 
respectively. If the remaining samples have been 
denoted by { : = 1, … , ( )} and : =1, … , ( ) , then ( ) may be obtained by the 
following formula:   ( ) = ∑ ∑ ( − )( )( ) .                  (2.20) 

In order to find some nonparametric confidence 
interval for | , , we are prepared now to compute the 
expected value and variance of | ,  . The main task of 
the following theorem, is to find these two quantities. 
For simplicity and without loss of generality, let = .  

 
Theorem 2. Let  = ( > , > , > ),   = ( > , > ) and  | ,  is given by (2.17). 

Then, 
(i) | ,  is an unbiased estimator for | , . 
(ii) For 0 ≤  ≤  ≤ 1 and  ≠ 0, the variance of | ,  is:  | , = (1 −  )     1 −   1(1 −  )−   −  . 
(iii) | ,  is a consistent estimator for | , . 
 
Proof. (i) First restate | ,  in the following form: | , = ( )( ),                                                      (2.21) 
 
where = {( , )| > , > }. Note that ⊆ , 

so 0 ≤ ( )( ) ≤ 1, which guarantees the existence of | ,  and | , . Moreover, it can be shown 
that the joint probability mass function of ( ( ), ( )) 
is: ( ), ( )( , ) = , − (  −  ) (1 − ) ;   ( , ) ∈ ( ), ( ),                                   (2.22) 

 
where    ( ), ( ) = {( , )| = 0, … , ;  ≤ ≤− }. For a justification and explanation of (2.22) 

note that ( ), ( ) = ( , ) is equivalent to ( ), ( − ), ( ) = ( , − , − ). We have 
used this equivalence, for demonstrating that ( −) = ( ) − ( ) =  −   which formerly was 
denoted by ( > , > , < ) and also for 
demonstrating the equivalence,  , − , − =, − .  

By using (2.21) and (2.22) the moment generating 
function of | ,  is computed as: 

| , ( ) = ∑ ∑   , − (  − ) (1 −  ) . 
Furthermore, by , − =  and the 

L'hopital’s Rule at  = 0 we have: | , ( ) =
(1 −  ) + ∑    1 +       ,   
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∈ .  
Regarding a statistical well-known theorem, since | , ( ) exists in a neighborhood of 0, all moments 

exist and ( ) can be extracted by ( ) | . 

Straight computation shows that 
| , ( ) | =   . 

(ii) For computation of | ,  we have  
 | , ( ) | =(1 −  )     1 −   ∑  −    + , 

which clearly proves (ii).   
(iii) By the fact that | ,  is unbiased for | , , it is 

enough to show that | ,  tends to 0 as  tends 
to infinity. By the results of part (ii), this variance may 
be rewritten in the following form:     | , =    1 −   (1 −  ) ∑  − (1 −

 )    . 

Also, (1 −  ) → 0, as → ∞ . So, it is enough to 
show that (1 −  ) ∑   → 0,  as → ∞. Fix  ∈ (0,1], and for given > 0 choose  ∈  such 
that   < . Moreover, (1 −  ) ∑  =(1 −  ) ∑   + (1 −  ) ∑   . 

Clearly, first part tends to zero as  tends to infinity. 
For the second part we have  ∑   <   ∑   <

 ∑  =   ((1 −  ) − 1). Therefore, 

 0 ≤ lim→ (1 −  ) ∑   <lim→   (1 − (1 −  ) ) =   < .  
So, for any given > 0, it concludes that 0 ≤ lim→ (1 −  ) ∑  < , which 

completes the proof.   ■ 
 
The proof of Theorem 2, does not depend on two 

sets  and . In fact a more general result holds which 
is the context of the following remark.  

 
 Remark 1. Let , … , ~  and , … , ~  are 

two independent random samples. For any arbitrary set 

, define ( ) = (( , ) ∈ ) and ( ) =∑ ∑ ( , ) where ( ) = 1       ∈0       ∉  . In the 
other words, ( ) is the number of pairs ( , ) in . 
Then, for any two arbitrary sets  and  which ⊆  
and ( ) > 0, we have ( )( ) = (1 −( ))  ( )( ) 1 − ( )( ) ∑ ( ( )) − ( )( ) ( ) . 

Also, ( )( ) is an unbiased and consistent estimator for ( )( ). 
 

Results 
In this section, we perform a simulation study to 

assess the quality and efficiency of the introduced 
parameters and estimators. Moreover, this numerical 
process gives us a comparison among the MLE, 
UMVUE and nonparametric estimator for | , . Since 
the results for =  is the same as the unconditional 
case ( | , = ), therefore the simulation has been only 
done for ≠ . All results are mean of 5000 iteration 
and give numerical approximations for the 
corresponding expected values. For more clearification 
note that we have iterated our simulation 5000 times. In 

 iteration we have generated random samples with 
size  and  and | , , | ,  and | ,  have 
computed. The values of | , , | ,  and | ,  
demonstrated in Tables are mean of these 5000 
computed estimates as follow: | , = ∑ | ,5000  

| , = ∑ | ,5000  

| , = ∑ | ,5000  

 
 Four different criteria have been used for 

investigating efficiency, effectiveness and potentialities 
of methods: i)-Bias, ii)-Mean Square Error (MSE), iii)-
Coverage Probability (CP), and iv)-Length of 
Confidence Interval (LCI). In Table 2, these quantities 
for = 2, = 1.6, different values of  and  and 
for two groups of parameters  and  ( = 1, = 2 and = 3, = 1.4) have been demonstrated. In order to 
view the effects of number of observations in 
performance of estimations, all parameters have been 
fixed, except  and . For the case of = 1 and = 2, 
it has observed that larger sample sizes have more 
reliable results.  

As has been excepted, the three criteria MSE, Bias 
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and LCI are decreasing with respect to sample sizes  
and , and increasing for criterion CP. By giving 
attention to the small values of MSE and Bias, the 
performance of all estimation methods seems to be 
remarkable. However, for = 1, = 2, positive values 
of Bias denote a negligible overestimation in this case. 
The results for  = 3, = 1.4, are the same as before, 
except for the sign of Bias which are negative, this 
shows an underestimation in this case. 

 Finally, Table 3 gives the results for different values 
of  and , when  = 1.5, = 1.6,  = = 30. 
This table confirms that | ,  and | ,  are both 
decreasing functions of the parameter , while they are 
increasing functions of the parameter , as claimed in 
Remark 1.   

In the sequel of this section, we inspect for 
performance of UMVUE and | ,  and will compare 
them with | , . Since the variance of UMVUE does 
not have a closed form, for its computation we need to 
calculate the variance from some sample of UMVUEs. 
Regarding the formula of MSE, for small values of Bias 
the variance may be approximately equal to MSE (we 
have computed the variance of UMVUE by using this 
method for some cases when these calculations had 
been confirmed by simulation). This denotes that 
comparisons based on CP and LCI, does not involve 
further information than comparisons based on Bias and 
MSE. On the other hand, results of Tables 2 shows that 
the performance based on CP and LCI is similar to 
performance based on Bias and MSE. Therefore, 

comparison among UMVUE, MLE and | ,  has been 
demonstrated only by using the Bias and MSE criteria.  

This comparison has been demonstrated in Tables 4 
and 5. Our findings show that  | ,  has the minimum 
Bias among three estimators, while this estimator has 
the worst performance w.r.t MSE criterion. The 
performance of MLE and UMVUE is approximately 
similar. Results indicate that for small sample sizes  
and , UMVUE has better performance whenever | ,  
is not close to 1. However, for small values of  and 
large , UMVUE is more reliable in comparison with 
large  and small . 
 
Real Data Analysis 

In this section, we will apply the conditional stress-
strength parameter (2.1) to a pair of real data sets for 
illustrative purposes. For more details about the data in 
Table 6, see Xia et al. [12]. This data are well-known 
and have been used in several studies on stress-strength 
parameter. For instance, Saracoglu et al. [13] have used 
this data for estimating the stress-strength parameter of 
Exponential distribution under progressive type-II 
censoring. The data sets consist of breaking strengths of 
jute fiber at two different gauge lengths 10 mm and 20 
mm. The gauges with 10 mm lengths have considered as 
strength  and gauges of 20 mm length as stress . The 
Kolmogorov-Smirnov’s test illustrates an acceptable 
fitness to the Exponential distribution with parameter 
0.0027 and 0.0029, respectively. The test’s statistics and 
their corresponding p-values have been shown in Table 

Table 2. MLE for = 2 and = 1.6, different sample sizes and two group of parameters , . 
Quantities Sample sizes 

 5 10 10 20 25 35 50 100 200 
 4 4 15 20 30 35 45 100 200 = 1, = 2 and = 2, = 1.6 which lead to | , = 0.0601 | ,  0.0712 0.0689 0.066 0.064 0.0632 0.0622 0.0612 0.0608 0.0605 

 0.0048 0.0027 0.0024 0.0013 0.001 7.E-04 5.E-04 2.E-04 1.E-04 
 0.011 0.0087 0.0058 0.0038 0.0031 0.002 0.001 7.E-04 3.E-04 

CP 0.7866 0.8572 0.8498 0.8854 0.896 0.912 0.92 0.9352 0.9426 
LCI 0.2619 0.2 0.1868 0.1364 0.1217 0.1033 0.0865 0.0615 0.0435 = 3, = 1.4 and = 2, = 1.6 which lead to | , = 0.9571 | ,  0.9425 0.9433 0.9519 0.9537 0.9549 0.9548 0.9552 0.9561 0.9568 

 0.0045 0.0045 0.0012 9.E-04 6.E-04 5.E-04 4.E-04 2.E-04 1.E-04 
 -0.0146 -0.0138 -0.0052 -0.0034 -0.0022 -0.0023 -0.0018 -0.001 -3.E-04 

CP 0.7492 0.7504 0.8618 0.8734 0.8922 0.9098 0.9124 0.937 0.9384 
LCI 0.2495 0.246 0.1326 0.1131 0.0927 0.0863 0.0761 0.0512 0.0361 

 
Table 3. Results for different values of  and  for = 1.5, = 1.6, = = 30. 

Quantities Results 
 0.5 0.5 0.5 1.25 1.25 1.25 3 3 3 
 0.2 1 2.3 0.2 1 2.3 1 5 7 | ,  0.7289 0.217 0.0223 0.9348 0.7018 0.0829 0.9893 0.0157 5.E-04 | ,  0.7301 0.2173 0.0249 0.9334 0.7015 0.085 0.9874 0.0177 8.E-04 
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6. Both p-values are significantly larger than 0.05. 
Therefore, the null hypothesis that data have the 
Exponential distribution has not been rejected.  

The estimation of conditional stress-strength 
quantity has been represented in Table 7. For different 
values of  and , | ,  has been estimated by three 
MLE, nonparametric and UMVUE methods.  

Discussion 
The conditional stress-strength parameter ( | , ) as 

an appropriate extension of the stress-strength parameter 
has been introduced. A general formula for computing | ,  in the case of continuous random variable has been 
presented. Inferences concerning | ,  have been 

Table 4. Comparison among MLE, | ,  and UMVUE for different sample sizes and = 0.5, = 0.3 and = 1, = 0.25 
which lead to | , = 0.239. 
Quantities Results 

 10 25 50 60 10 20 50 30 100 
 10 25 50 60 30 30 35 80 40 | ,  0.2516 0.2438 0.2417 0.2408 0.2414 0.2436 0.2432 0.24 0.2431 | ,  0.2317 0.2372 0.2379 0.2382 0.2319 0.2334 0.2372 0.2366 0.2372 | ,  0.239 0.24 0.2385 0.2387 0.2381 0.24 0.2401 0.2395 0.2395 ( | , ) 0.0066 0.0025 0.0012 0.001 0.0036 0.0025 0.0016 0.0012 0.0012 ( | , ) 0.0064 0.0025 0.0012 0.001 0.0038 0.0024 0.0015 0.0012 0.0012 ( | , ) 0.016 0.0058 0.003 0.0023 0.0084 0.0056 0.004 0.0027 0.0031 ( | , ) 0.0126 0.0048 0.0027 0.0018 0.0024 0.0046 0.0042 0.001 0.0041 ( | , ) -0.0074 -0.0018 -0.0011 -8.E-04 -0.0071 -0.0056 -0.0018 -0.0024 -0.0018 ( | , ) 0 0.001 -5.E-04 -4.E-04 -0.001 0.001 0.0011 5.E-04 5.E-04 

 
 
Table 5. Comparison among MLE, | ,  and UMVUE for different sample sizes and = 1, = 2 and = 0.2, = 0.25 
which lead to | , = 0.4549. 
Quantities Results 

 10 15 25 50 60 5 40 80 70 
 10 15 25 50 60 10 60 20 60 | ,  0.4487 0.4512 0.4534 0.4533 0.4529 0.4328 0.4525 0.4567 0.4527 | ,  0.4593 0.4565 0.4578 0.4553 0.4569 0.4472 0.4541 0.4593 0.4558 | ,  0.4565 0.453 0.4522 0.4542 0.4549 0.4576 0.4549 0.4546 0.4553 ( | , ) 0.0121 0.0081 0.0049 0.0025 0.0022 0.02 0.0028 0.003 0.0028 ( | , ) 0.0142 0.0092 0.0052 0.0026 0.0022 0.0264 0.003 0.0033 0.0029 ( | , ) 0.0261 0.0161 0.0097 0.0046 0.0039 0.0443 0.0052 0.0064 0.0051 ( | , ) -0.0062 -0.0036 -0.0014 -0.0016 -0.0019 -0.022 -0.0023 0.0019 -0.0022 ( | , ) 0.0045 0.0017 0.003 5.E-04 0.0021 -0.0076 -7.E-04 0.0045 9.E-04 ( | , ) 0.0016 -0.0019 -0.0026 -6.E-04 1.E-04 0.0027 1.E-04 -3.E-04 4.E-04 

 

 
Table 6. The breaking strength of jute fiber. 

10 mm 20 mm 
693.73 671.49 262.9 71.46 578.62 547.44 
704.66 183.16 353.24 419.02 756.7 116.99 
323.83 257.44 422.11 284.64 594.29 375.81 
778.17 727.23 43.93 585.57 166.49 581.6 
123.06 291.27 590.48 456.6 99.72 119.86 
637.66 101.15 212.13 113.85 707.36 48.01 
383.43 376.42 303.9 187.85 765.14 200.16 
151.48 163.4 506.6 688.16 187.13 36.75 
108.94 141.38 530.55 662.66 145.96 244.53 
50.16 700.74 177.25 45.58 350.7 83.55 

statistic 0.958 statistic 0.317 
p-value 0.727 p-value 0.666 
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accomplished for Exponential distribution and 
nonparametric case. Although, | ,  has been computed 
for systems with Gamma distributed components, a 
detailed study in this case may be performed in another 
specified project.   

 Formerly, the stress-strength parameter have been 
studied in details for a wide range of distributions such 
as Weibull, Burr type, generalized Exponential, 
generalized Logistic and generalized failure rate 
distributions (See [3] for a comprehensive list). These 
distributions may have been considered for studying the 
conditional stress-strength parameter, as well. 
Moreover, in a Bayesian point of view, estimations for 
conditional stress-strength parameter may have been 
done for Exponential and other above mentioned 
distributions.  

Bhattacharyya and Johnson [14], have introduced 
the multicomponent stress strength parameter for the 
situations that a system may have more than one 
component , as: 

 , = [     , … ,     ].  (5.1) 
 
Eryilmaz [15], Pakdaman and Ahmadi [16], Rao et 

al. [17] and Dey et al. [18] have considered this 
parameter for different distributions. The extension of ,  to some practical and suitable conditional version, 
may be another motivation and of interest. 
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Table 7. Estimation of | ,  by three methods for different values of  and  in jute fiber data. 
 4 2 10 1 15 50 200 250 
 2.25 5 1 10 14 100 195 300 | ,  0.5202 0.5135 0.5303 0.5051 0.5191 0.4515 0.5247 0.4515 | ,  0.5489 0.5489 0.5489 0.5489 0.5489 0.4626 0.4647 0.3835 | ,  0.4846 0.5139 0.4951 0.5058 0.4834 0.4536 0.4891 0.4528 


