- [1] EI Energy use in industry, https://www.eia.gov/energyexplained/use-of-energy/industry.php ; 2020 [Accessed 28 July 2020].
- [2] Li, L., Li, C., Tang, Y., & Li, L. An integrated approach of process planning and cutting parameter optimization for energy-aware CNC machining. Journal of Cleaner Production. 2017;162: 458-73.
- [3] Zeng, Y., Che, A., & Wu, X. Bi-objective scheduling on uniform parallel machines considering electricity cost. Engineering Optimization. 2018;50(1): 19-36.
- [4] Wu, X., & Che, A. A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega. 2019; 82: 155-65.
- [5] Tavakkoli-Moghaddam, R., Taheri, F., Bazzazi, M., Izadi, M., & Sassani, F. Design of a genetic algorithm for bi-objective unrelated parallel machines scheduling with sequence-dependent setup times and precedence constraints. Computers & Operations Research. 2009; 36(12): 3224-30.
- [6] Angel, E., Bampis, E., & Kacem, F. Energy aware scheduling for unrelated parallel machines. IEEE International Conference on Green Computing and Communications: IEEE;2012 .p. 533-40.
- [7] Liang, P., Yang, H. D., Liu, G. S., & Guo, J. H. An ant optimization model for unrelated parallel machine scheduling with energy consumption and total tardiness. Mathematical Problems in Engineering. 2015. doi: 1155/2015/907034
- [8] Li, Z., Yang, H., Zhang, S., & Liu, G. Unrelated parallel machine scheduling problem with energy and tardiness cost. The International Journal of Advanced Manufacturing Technology. 2016; 84(1-4): 213-26.
- [9] Cota, L. , Coelho, V. N., Guimarães, F. G., & Souza, M. J. Bi‐criteria formulation for green scheduling with unrelated parallel machines with sequence‐dependent setup times. International Transactions in Operational Research. 2018 doi: 10.1111/itor.12566
- [10] Soleimani, H., Ghaderi, H., Tsai, P. W., Zarbakhshnia, N., & Maleki, M. Scheduling of unrelated parallel machines considering sequence-related setup time, start time-dependent deterioration, position-dependent learning and power consumption minimization. Journal of Cleaner Production. 2020; 249: 119428.
- [11] Zhu, W., & Tianyu, L. A Novel Multi-Objective Scheduling Method for Energy Based Unrelated Parallel Machines With Auxiliary Resource Constraints. IEEE Access.2019; 7: 168688-168699.
- [12] Moon, J. Y., Shin, K., & Park, J. Optimization of production scheduling with time-dependent and machine-dependent electricity cost for industrial energy efficiency. The International Journal of Advanced Manufacturing Technology. 2013; 68(1-4): 523-35.
- [13] Ding, J. Y., Song, S., Zhang, R., Chiong, R., & Wu, C. Parallel machine scheduling under time-of-use electricity prices: New models and optimization approaches. IEEE Transactions on Automation Science and Engineering. 2015; 13(2): 1138-54.
- [14] Che, A., Zhang, S., & Wu, X. Energy-conscious unrelated parallel machine scheduling under time-of-use electricity tariffs. Journal of Cleaner Production. 2017; 156: 688-97.
- [15] Cheng, J., Chu, F., & Zhou, M. An improved model for parallel machine scheduling under time-of-use electricity price. IEEE Transactions on Automation Science and Engineering. 2017; 15(2): 896-9.
- [16] Abikarram, J. B., McConky, K., & Proano, R. Energy cost minimization for unrelated parallel machine scheduling under real time and demand charge pricing. Journal of Cleaner Production. 2019; 208: 232-42.
- [17] Saberi-Aliabad, H., Reisi-Nafchi, M., & Moslehi, G. Energy-efficient scheduling in an unrelated parallel-machine environment under time-of-use electricity tariffs. Journal of Cleaner Production.2020;249: 119393.
- [18] Kurniawan, B. Mathematical Models of Energy-Conscious Bi-Objective Unrelated Parallel Machine Scheduling. Jurnal Teknik Industri.2020; 21(2): 115-125.
- [19] Wang, S., Wang, X., Yu, J., Ma, S., & Liu, M. Bi-objective identical parallel machine scheduling to minimize total energy consumption and makespan. Journal of Cleaner Production. 2018; 193: 424-40.
- [20] Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of discrete mathematics: Elsevier; 1979. p. 287-326.
- [21] Ehrgott, M., & Gandibleux, X. Multiobjective combinatorial optimization—theory, methodology, and applications. Multiple criteria optimization: State of the art annotated bibliographic surveys: Springer; 2003. p. 369-444.
- [22] Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. Handling multiple objectives with particle swarm optimization. IEEE Transactions on evolutionary computation. 2004; 8(3): 256-79.
- [23] Wang, W., Chen, L., Jie, J., Zhao, Y., & Zhang, J. A novel multi-objective particle swarm optimization algorithm for flow shop scheduling problems. International Conference on Intelligent Computing: Springer; 2011 .p. 24-31.
- [24] Torabi, S. A., Sahebjamnia, N., Mansouri, S. A., & Bajestani, M. A. A particle swarm optimization for a fuzzy multi-objective unrelated parallel machines scheduling problem. Applied Soft Computing. 2013; 13(12): 4750-62.
- [25] Liao, X., Zhang, R., & Chiong, R. Multi-objective optimization of single machine scheduling with energy consumption constraints. IEEE Symposium Series on Computational Intelligence (SSCI): IEEE; 2017. p. 1-8.
- [26] Manupati, V. K., Rajyalakshmi, G., Chan, F. T., & Thakkar, J. J. A hybrid multi-objective evolutionary algorithm approach for handling sequence-and machine-dependent set-up times in unrelated parallel machine scheduling problem. Sādhanā. 2017; 42(3): 391-403.
- [27] Liu, Y., Liao, X., & Zhang, R. An Enhanced MOPSO Algorithm for Energy-Efficient Single-Machine Production Scheduling. Sustainability,. 2019; 11(19): 5381.
- [28] Ulungu, E. L., Teghem, J. F. P. H., Fortemps, P. H., & Tuyttens, D. MOSA method: a tool for solving multiobjective combinatorial optimization problems. Journal of multicriteria decision analysis. 1999; 8(4): 221.
- [29] Mansouri, S. A., Hendizadeh, S. H., & Salmasi, N. Bicriteria scheduling of a two-machine flowshop with sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology. 2009; 40(11-12): 1216-26.
- [30] Chyu, C. C., & Chang, W. S. Optimizing fuzzy makespan and tardiness for unrelated parallel machine scheduling with archived metaheuristics. The International Journal of Advanced Manufacturing Technology. 2011; 57(5-8): 763.
- [31] Mohammadi, H., & Sahraeian, R. Bi-objective simulated annealing and adaptive memory procedure approaches to solve a hybrid flow shop scheduling problem with unrelated parallel machines. IEEE International Conference on Industrial Engineering and Engineering Management: IEEE; 2012. p. 528-32.
- [32] Shoaardebili, N., & Fattahi, P. Multi-objective meta-heuristics to solve three-stage assembly flow shop scheduling problem with machine availability constraints. International Journal of Production Research. 2015; 53(3): 944-68.
- [33] Tirkolaee, E. B., Goli, A., Hematian, M., Sangaiah, A. K., & Han, T. Multi-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithms. Computing. 2019; 101(6): 547-70.
- [34] Shannon, C. E. A mathematical theory of communication. The Bell system technical journal. 1948; 27(3): 379-423.
- [35] Zhang, H., Wu, Y., Pan, R., & Xu, G. Two-stage parallel speed-scaling machine scheduling under time-of-use tariffs. Journal of Intelligent Manufacturing. 2020:1-22.
|