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Abstract  

An appropriate trade-off between total electricity costs and makespan can lead to 

good production planning and reduce unnecessary energy consumption. Time-of-

use (TOU) electricity pricing policy has been executed in many countries, enabled 

industrial consumers with high energy consumption to reduce their energy costs. 

In this study, an unrelated parallel machines scheduling problem is considered for 

minimizing makespan and also energy consumption costs. Due to the importance 

of sequence-dependent setup times in production environments, they are 

considered according to the restricted duration of time periods under TOU policy. 

These considerations are added to the current literature. A mixed-integer bi-

objective mathematical model is presented and the  -constraint method is applied 

to solve small and also medium-sized instances. Because the problem is shown to 

be NP-hard, several large-sized instances are approximately solved using Multiple 

Objective Particle Swarm Optimization algorithm, and Multiple Objective 

Simulated Annealing algorithm. Computational experiments are conducted on 

randomly generated data. The results show the efficiency and appropriate 

performance of the proposed methods. 
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Introduction  
 

Due to rapid economic growth and expanding population, energy demand is overgrowing. In 

most manufacturing industries, more than 50% of the price of a product is tied to the energy 

required to produce it. In 2019, the industrial sector of the U.S. accounted for 35% of total 

end-use energy consumption [1]. Recent researches show that more than 90% of the 

environmental issues are based on electrical energy consumption in the utilization phase [2]. 

As energy costs increase, energy consumption gains more importance in the industry. 

Electricity demand during the day is unbalanced, which leads to the low efficiency of 

electricity consumption. To improve electricity efficiency, different tariffs have been applied 

to balance energy use in different time periods. Three types of time-dependent energy pricing 

are introduced: 1) time of use pricing (TOU), 2) real-time pricing (RTP), and 3) critical peak 

pricing (CPP), among which the TOU pattern is the commonly used and studied policy [3]. 

Based on TOU policy, electricity demand is the most important factor in determining the 

price of electricity and the day is divided into three periods, i.e. on-peak, mid-peak, and off-
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peak. The plan encourages manufacturers to prefer courses with low electricity prices to those 

with high prices to avoid high electricity costs. 

There are various ways to minimize energy consumption which are often capitalizing and 

require strategic decisions. For example, buying new machines with lower energy 

consumption can be useful in energy saving. But, this decision requires more investment and 

may result in more pressure on companies [4]. One of the most important actions that does 

not require much investment and can only be controlled and improved by changing the 

production process is scheduling optimization. Incorporating energy metrics into production 

scheduling can reduce production costs. 

In unrelated parallel machines scheduling problems, some specific machines are available 

from the beginning, which are the same as what machines do, and the only difference is the 

processing speeds of the different machines. Various processing speeds lead to different 

energy consumptions. 

Considering setup times is another area of research that focuses on practical 

considerations. In most scheduling studies, setup times are neglected or considered as a 

portion of process time, which streamlines the analysis but makes the model unrealistic. Setup 

time relates to all the activities performed to prepare the main stage of the process. In general, 

two types of setup times are introduced. The first type just depends on the job itself, i.e., 

sequence-independent setup times. Another type depends on the current job and the job that 

has been done before it, which is called sequence-dependent setup times. As an example, in a 

painting process, cleaning the machine while a color change is necessary which its length 

depends on the previous and next colors [5]. 

In this research, a bi-objective mathematical model is formulated for the unrelated parallel 

machines scheduling with TOU energy pricing which minimizes the makespan and tariff 

charged energy consumption cost. Because of the importance of sequence-dependent setup 

times for parallel machines and the more realistic assumptions of the problem, this constraint 

is also considered. 

The rest of the article is arranged as follows. Reviewing the relevant literature is presented 

in Section 2. The problem specifications are described in Section 3. The  -constraint method, 

the Multiple Objective Particle Swarm Optimization (MOPSO), and the Multiple Objective 

Simulated Annealing (MOSA) algorithms for the research problem are introduced in Section 

4. The computational results are presented in Section 5. Finally, Section 6 concludes the 

research and also proposes several future research directions. 

 

Literature review 
 

Recently, due to the increasing cost of energy consumption, energy-efficient scheduling has 

given noteworthy attention. In this section, the studies that have considered the energy-

efficient unrelated parallel machines scheduling problem are reviewed. 

 

Energy-efficient unrelated parallel machines scheduling without applying energy tariffs 

 

Angel et al. [6] considered an energy-aware unrelated parallel machines scheduling problem 

by considering machine-dependent release date for each job to minimize energy consumption 

and also average weighted completion times. The LP Rounding procedure is first 

implemented for solving the problem. Since the proposed algorithm does not guarantee 

constant quality and stability in any implementation of the algorithm, so the Randomized 

Rounding algorithm is used for this purpose.  

Liang et al. [7] considered an unrelated parallel machines scheduling problem for 

minimizing the weighted summation of total tardiness and energy consumption. The machine 
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setup and idle energy consumption are considered. For each job, a specific due date is applied. 

Ant Colony algorithm (ACO) and innovative rules of the ATC method are used for solving 

this problem. 

Li et al. [8] discussed unrelated parallel machines scheduling problems in three modes: 

machine processing, idle, and warm-up. Their objective function is minimizing total tardiness 

and energy consumption. Due to the complexity of the model, several heuristic algorithms are 

recommended. 

Cota et al. [9] considered an unrelated parallel machines scheduling problem that 

considered sequence-dependent setup times for minimizing the makespan and the total 

consumption of electricity. A mixed-integer linear programming (MILP) formulation is 

presented which tackles independent and non-preemptive jobs. Furthermore, a novel meta-

heuristic algorithm called Smart Pool is used to find a solution near the Pareto front in a 

limited computational budget. 

Wu and Che, [4] studied unrelated parallel machines with total energy consumption and 

makespan minimization objectives, considering the speed-scaling of machines. A Memetic 

Differential Evolution algorithm is proposed as a solution approach that includes selecting 

and rotating operators, speed adjustment, and swapping job-machine. 

 Soleimani et al. [10] studied a scheduling problem of unrelated parallel machines 

considering the simultaneous effects of start-time-dependent deterioration, position-dependent 

learning, and sequence-dependent setup times. A MIP model is presented to minimize the 

mean weighted tardiness and power consumption. To solve the problem, Genetic Algorithm 

(GA), Cat Swarm Optimization (CSO), and Interactive Artificial Bee Colony (IABC), are 

implemented. 

Zhu and Tianyu, [11] studied an unrelated parallel machine problem by considering setup 

times, ready times, and resource constraints. They developed a multi-objective model to 

minimize total energy consumption and weighted completion time. To solve the problem, an 

immune clone algorithm based on a non-domination rank selection strategy, by applying 

clone operators, neighborhood search operators, and elite preservation operators, is proposed. 

 

Energy-efficient unrelated parallel machines scheduling with applying energy tariffs 

 

Moon et al. [12] addressed a bi-objective unrelated parallel machines scheduling problem to 

minimize the total electricity cost and makespan under RTP tariffs. In the proposed model, 

idle time is allowed, and the production schedule is considered for one day. Genetic algorithm 

(GA), shifted GA (SGA), and Hybrid Inserted Genetic algorithm (HIGA) are used.  

Ding et al. [13] tackled a time-interval-based mixed-integer model under the TOU tariffs 

for minimizing the cost of electricity consumption so that the total completion time does not 

exceed a predetermined production deadline. To solve the problem, they proposed a column 

generation (CG) method using the Dantzig–Wolfe decomposition. 

Che et al. [14] considered the TOU pattern for minimizing the electricity cost. To solve 

small-sized instances, an improved MILP model is designed, and for large-sized instances, 

they suggested a two-stage heuristic. Then they validated the proposed model and heuristics 

with a real-world instance. 

Cheng et al. [15] improved the MILP model of Ding et al. [13] for unrelated parallel 

machines scheduling with the TOU pattern. In the proposed model, constraints of job 

completion, machine availability, and non-preemption are modified to offer a more accurate 

and comprehensive model. 

Abikarram et al. [16] considered demand charges in unrelated parallel machines 

environment under the RTP tariffs. Further, they investigated the sensitivity of the parameters 

like the number of machines, operation of machines, and so on. 
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Saberi-Aliabad et al. [17] presented a MILP model for unrelated parallel machines 

scheduling problems to minimize the cost of consuming energy with TOU energy tariffs. 

They presented a number of dominance rules and valid inequalities. To solve the problem, a 

relax heuristic algorithm is used and results are evaluated by lower bound values. 

Kurniawan, [18] considered a bi-objective unrelated parallel machine scheduling problem 

to minimize the total tardiness and energy consumption under TOU tariffs. Two MIP models 

are proposed, using the time-indexed and disjunctive formulation, and to solved the problem 

the weighted sum method is applied. Furthermore, the effectiveness of both models is 

compared. 

 

Research gap and novelties of this study 

 

According to the literature review, most of the researches on the unrelated parallel machines 

scheduling only consider single-objective of energy consumption minimization or makespan 

minimization, and few studies have addressed both objectives simultaneously. However, in 

none of the researches on the energy-efficient unrelated parallel machines scheduling with 

energy tariffs (to minimize both costs of electricity consumption and makespan), sequence-

dependent setup times are not considered while it is a vital consideration in real-world 

applications. So, in this study, this assumption is also considered to get closer to real-world 

applications. The two studies that are most similar to our research are Che et al. [14] and 

Wang et al. [19] which are extended to consider the above considerations. 

To solve the proposed model, the  -constraint method (for small-sized instances) and 

MOPSO and MOSA algorithms (for large-sized instances) are implemented. Problems with 

different sizes are randomly generated, and the results are presented in the upcoming sections. 

  

Problem description 
 

In this research, there are   jobs that must be processed on   unrelated parallel machines. All 

machines and also jobs are available at the starting time of the planning horizon. Each job  , is 

described by its process time on machine  ,    , and energy consumption rate on each 

machine,     ,              . Each machine is able to work on just one job at a 

period, and each job is allowed to be allocated only to one machine at a period. Preemption is 

not allowed. Machines are accessible throughout the entire time horizon. 

Another issue that is considered in this study is sequence-dependent setup time,     , that is 

determined based on the job done  , and its next job  , and is different for each machine  . 
Also, due to TOU policy, the time horizon is split into   time periods that period   ,     
 , has the energy price   . The length of period   is indicated by   , where   ∑       . 

Also, if job   is allocated to machine  , the possible maximum time periods that job can 

span is indicated by    , that can be calculated according to the problem parameters as 

follows: 

 
(1)            ∑       {     }   {     }      

 
          {     }      

 

The other used parameter is   as a large positive integer: 

 

(2)   
(∑        {     }            {     }   {     }       

 
   )

 
 ∑    

 
     

The problem considered in this research is based on the model proposed by Che et al. [14]. 

The decision variables are as follows: 
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Indices: 
    index of job,         . 

  index of machine,      . 

  index of time period,      . 

 

Parameters: 
  the number of jobs. 

  the number of machines. 

  the number of time periods. 

     the processing time of job   on machine  . 

     The  energy consumption of job   on machine  . 

    the energy price of time period  . 

    The length of  time period  . 

     The possible maximum time periods that job   can span on machine  . 

      Setup time for switching job   to job   on machine  . 

  a large positive integer. 

 

Variables: 
    Total electricity cost  

      The makespan. 

    Completion time of job  . 

     The actual process duration of job   in k
th
 time interval of machine  . 

     Binary variable which is equal to 1 if job   is allocated to k
th
 time interval of machine  , 0 

otherwise. 

     Binary variable which is equal to 1 if job   is allocated to machine  , 0 otherwise. 

      Binary variable which is equal to 1 if the processing of job   is started in k
th
 time interval of 

machine  , 0 otherwise. 

      Binary variable which is equal to 1 if job   is the next job after job   on machine   , 0 

otherwise. 

The research problem is modeled via Eqs. 3-23. 

 

                      (3) 

        ∑ ∑ ∑          
 
   

 
   

 
              (4) 

          

∑ ∑           
 
   

 
                                                                    (5) 

                                                           
          ,         ,  
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∑     
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       (          )                       
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(20) 

                                                                                                                                          (21) 

   ,      ,      ,                                    
           ,               
                              

(22) 

     ,     ,      ,      {   }                  
           ,              
                        

(23) 

 

The objective functions (3) and (4) try to minimize the makespan and the energy 

consumption cost, respectively. Constraint set (5) guarantees that the total processing times of 

each job is equal to its processing duration. Constraint set (6) guarantees that if job   is not 

allocated to k
th

 period of machine   (i.e.,       ), then the actual process duration of job   in 

k
th

 period of machine   will be equal to 0. Constraint set (7) does not allow the process 

duration of all jobs assigned in a period on each machine and their setup times to exceed the 

duration of that period. Constraint set (8) allows job   to be allocated to several periods of 

machine   only if these periods are consecutive. Due to the non-preemption assumption, 

constraint set (9) checks that if a job is allocated to periods     and    , then the whole 

period   should be assigned to that job. Constraint set (10) guarantees the consistent values 

for binary variables     and     . Constraint set (11) ensures that every job can only be 

allocated to one machine. Constraint sets (12) and (13) define the completion time of job  . 
Constraint sets (14) and (15) express the relationship of binary variables related to the 

sequence of jobs and their processing on a machine. Constraint set (16) defines the 

relationship between the two variables      and    . Due to the limited duration of time 

periods, in order to consider sequence-dependent setup times, the period at which the 

processing of each job on each machine started must be specified. Therefore, constraint sets 

(17) to (20) determine the start-up period of the processes. Constraint set (21) defines     . 

Constraint sets (22) and (23) declare the range of decision variables. 

Based on the three-field notation proposed by Graham et al. [20], our problem is related to 

            {        }, where   represents the unrelated parallel machine, TOU 

represents the time-of-use electricity scheme,       represents considering sequence-dependent 

setup times,      and     indicate the makespan and the total energy consumption costs 

respectively. 

If process duration and energy consumption rate of job   on all the machines are the same 

(             ) and sequence-dependent setup time is not considered, our problem is 

reduced to (       {        }).  
According to Wang et al. [19], the problem of identical parallel machines scheduling with 

makespan and energy consumption costs objective functions is NP-hard, so our problem is 

NP-hard too. 
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Solution Approaches 
 

The concept of the Pareto front is used in multi-objective mathematical programming. The 

Pareto optimality concept states that although we cannot obtain an optimal solution for all 

objective functions, simultaneously, we can find several solutions that are better than others in 

the search space. These solutions are called Pareto-optimal while other points of the search 

space are the set of dominated solutions. A widely used exact method in this area is the  -

constraint method, which can solve small-sized instances in an acceptable computational 

time. With increasing the size of the problem and due to its NP-hardness, it becomes difficult 

to get the Pareto front. So, MOPSO and MOSA algorithms are developed in this research to 

solve large-sized instances. 

 

The  -constraint method 

 

In the  -constraint method, one of the objective functions is considered and the other 

objective functions are converted to the constraints, called  -constraints [21]. For this 

problem,        is regarded as a constraint. 

 

Multi-objective particle swarm optimization algorithm 

 

The multi-objective particle swarm optimization algorithm (MOPSO) introduced by Coello et 

al. [22] is widely applied in the field of scheduling problems. For example it is used in 

[23,24,25,26,27].  

The particle swarm optimization algorithm begins by creating a random population of 

particles. Each particle represents a point in the solution space of the problem. At each 

iteration of the algorithm, the particle is moved to a better position. Fig. 1 illustrates the 

flowchart of the MOPSO algorithm. 

 

Generating initial sequences of jobs 

To find the sequence of jobs and generate initial solutions, permutations of digits 1 to 

      are generated randomly  where   shows the number of jobs and   shows the 

number of machines). For each generated permutation, from the beginning to the first cell 

whose its  value is more than  , the jobs are allocated to the first machine and their sequence 

is determined. After this cell, up to the second cell where the numerical value is greater than 

 , the jobs are allocated to the second machine and their sequence is specified. In the same 

way, the jobs are allocated to each machine and their sequences are determined. For example, 

assume the following instance having 6 jobs and 3 machines, a solution can be represented as 

Fig. 2. 
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Stopping criteria met?

end

no

yes

Define MOPSO parameters and generate initial 

population

Separate non-dominated solutions and sort them in 

repository

Tabulation of the discovered target space

For each particle , select the leader from repository 

and start movement

Update the particle’s best memory

Add non-dominated solutions of the current 

population to repository

Delete dominated solutions of 

repository

     Is the number of repository members 

exceeded the determined capacity?
yes

no

 
Fig. 1.  Flowchart of the MOPSO algorithm 

 

 

 
Fig. 2.  Sequence pattern for an instance with 6 jobs and 3 machines 

 

Based on the above definition, jobs 2 and 5 are allocated to machine 1, and jobs 3, 1, 4, and 

6 are allocated to machine 3. In this example, no job is assigned to machine 2. 

 

Sorting the solutions 

In the multi-objective optimization, the domination of the Pareto-optimal solution is the 

main criterion for recognizing the quality of different solutions. In this case, it is said that the 

solution    with objective values (      ,     ) dominates the solution    with objective 

values (      ,     ), if one of the following two conditions is met: 

 
     <     and       ≤      

      ≤       and      <      
(24) 

 

This relationship is denoted by        . If one of the solutions does not dominate the 

other, two solutions are considered in a Pareto rank. All dominant solutions are stored in the 

repository. 

 

6 4 1 3 7 8 5 2 
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Multi-objective simulated annealing algorithm 

 

The multi-objective simulated annealing algorithm (MOSA) [28] is an extended version of the 

single-objective simulated annealing while uses the non-dominated concept. Compared to 

other evolutionary optimization algorithms, MOSA does not require much memory to store 

population information. This algorithm is utilized in scheduling studies such as 

[29,30,31,32,33]. 

The initial sequence pattern of jobs is generated in the same way as described in the 

MOPSO algorithm.  

 

Neighborhood generation 

In the MOSA algorithm, the new solution is randomly generated adjacent to the previous 

solution using a suitable neighborhood structure. Therefore, choosing the right neighborhood 

structure is very important to maintain the problem convergence to achieve the optimal 

solution. In this research, three mechanisms of neighborhood generation are used. The Swap 

operator first randomly chooses two jobs from the list of jobs sequence and swaps them. In 

the Reversion operator, two cells are selected and all the cells between them are written in 

reverse. In the third operator, named insertion, two cells are selected and the first selected cell 

is placed after the second chosen cell.  

 

Initial temperature (  ) 

The Initial temperature should be high enough to allow movement to the neighborhood and 

search space. By setting too high values for initial temperature, the algorithm moves to each 

neighborhood and its efficiency becomes the same as a local search algorithm. Oppositely, if 

a too low value is set for the initial temperature, it leads to early convergence and possibly 

falling into the local optimal trap. One way to determine the    parameter, which is used in 

this research, is to generate a number of consecutive solutions using the selected 

neighborhood structure and consider the maximum difference of the objective function 

between two consecutive solutions as the initial temperature. 

 

Cooling ratio ( ) 

After passing the specified iterations at each temperature, the temperature should be 

reduced. As the algorithm progresses, the likelihood of accepting a worse solution will 

decrease as the algorithm proceeds to find the optimal solution. The relationship is as follows: 

 

                                                                                                                      (25) 

 

Appropriate values for   are determined according to the problem conditions. Usually, one 

of these two criteria is used as the stopping condition: reaching 1) the freezing temperature, or 

2) the maximum number of iterations without gaining any improvement. In this study, the 

second criterion is used. 

 

Parameter setting and results 
 

The  -constraint procedure is implemented in GAMS while MOPSO and MOSA algorithms 

are implemented in MATLAB on a personal computer with a 1.80 GHz Ci5 processor and 6 

GB RAM. This section presents the parameter setting procedure and compares the 

performance of our solution approaches. 
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Parameter Tuning 

 

MOPSO and MOSA algorithms have several factors and parameters which affect the quality 

of results and efficiency of algorithms. In other words, setting these parameters can 

significantly improve the performance of algorithms. The Taguchi method is a powerful and 

effective technique for parameter setting. This method determines suitable levels of the design 

factors and the optimal parameter combination via reducing the number of experiments and 

also by means of the signal-to-noise ratio. 

For a minimization problem, Taguchi proposed the following equation called smaller is 

better. 

 

(26) S/N ratio =        ∑    
     

    

 

Where    is the response value obtained from the  th
 instance and   is the number of instances. 

To convert the criteria into an answer, the Simple Additive Weighting (SAW) technique is 

used. The SAW technique can be described in a few steps: 

1- Create a decision matrix and identify the negative or positive nature of each criterion. 

2- Calculate the normalized decision matrix using Eq. 27. 

 

(27) 

If     
  :        

   

  
    

If     
  :        

  
   

   
 

 

If the criterion is positive, each of the numbers in that column is divided by the largest 

number while if the criterion is negative, the minimum of that column is divided by each 

number. 

3-Calculation of simple Additive Weighting by Eq. 28. 

 

(28) ∑             ∑            

 

In this study, the entropy method [34] is used to calculate the relative weights,   . 

 

Comparison metrics of multi-objective algorithms 

 

 Mean Ideal Distance (MID) 

MID measures the average distance of Pareto-optimal solutions from an ideal point. So, it is 

clear that the lower the metric is, the better the performance of the algorithm. 

Because we try to find fronts closer to the coordinate center (0,0), the MID calculates the 

distance between the fronts from the best population value. In this study, the ideal point is 

considered as the minimum value of objective functions amongst all algorithms. Eq. 29 is 

used to calculate the MID metric: 

 

    ∑

√ 
      

    

  
      

       
      

    

  
      

     

 

 
     

(29) 

 

In Eq. 29,   indicates the number of Pareto-optimal points,   
    and   

     are maximum 

and minimum values of the objective values amongst all the comparable algorithms, 

respectively. Also (  
       

    ) is the ideal point. 
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 Spacing Metric (SM) 

The diversity of the Pareto-optimal front in the solution area can be quantified with this 

metric. This metric is calculated based on Eq. 30. 

 

(30)    
∑ | ̅    |

   
   

      ̅
 

 

Where    indicates the Euclidean distance of two successive solutions of non-dominated 

solutions, and  ̅ is the average of all    values. The lower value of SM represents the better 

performance of an algorithm. 

 

 Diversification Metric (DM) 

DM shows the amplitude of Pareto-optimal solutions of an algorithm determined by Eq. 31. 

The higher value of DM indicates that the algorithm performs better. 

 

(31)    √ 
               

        
            

       
               

        
            

       

 

 CPU Time 

One of the important metrics in large-sized instances is the required CPU Time for obtaining 

the solution.  

 

Parameter setting for the proposed MOPSO algorithm 

The proposed MOPSO algorithm has 4 parameters that each has 3 levels according to 

previous researches as shown in Table 2. The sample problems used in this section are 

randomly generated in small and large sizes. Table 1 shows the experimental design where U 

represents the discrete uniform distribution. For each problem set, 5 instances are evaluated, 

and averages answers are considered. Table 2 shows the suggested values for MOPSO 

parameters. 

 
Table 1. Experimental design 

Factors Levels for small-scale Levels for large -scale 

Number of jobs (N) 5, 25, 50 60, 100, 150 

Number of machines (M) 5, 8 15, 30 

processing time (    ) (hour) U~[1, 3], U~[1,5] U~[1, 3], U~[1, 5] 

energy consumption rate (    ) (kilowatt) U~[1, 5] U~[1, 5] 

sequence-dependent setup time (     ) (hour) U~[1, 3] U~[1, 3] 

energy price (   ) ($/kilowatt-hour) U~[1, 5] U~[1, 5] 

duration of period (   ) (hour) {50, 100} {150, 300} 

Number of time periods (K) {3, 4, 5} {3, 4, 5} 

 

Table 2. Parameters and candidate levels for the MOPSO algorithm 

Large -scale levels 

(Instances 16-25) 

Small-scale levels 

(Instances 1-15) 
Parameter 

{100, 120, 150} {50, 75, 100} Particle size 

{0.7, 0.8, 0.9} {0.6, 0.75, 0.9} Inertia weight (W) 

{1, 1.5, 2} {1, 1.5, 2} Personal-learning coefficient (  ) 

{1, 1.5, 2} {1, 1.5, 2} Global-learning coefficient (  ) 

 

According to the Taguchi Orthogonal Array, the L27 design can be used by considering 4 

parameters and 3 levels. Experiments are performed in different cases, and metrics are 

calculated. To analyze different combinations in the Taguchi method, only one numerical 
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value must be entered to determine the best combination, so the SAW method is used. The 

results are shown in Table 3. 

 
Table 3. SAW values for designed experiments for the MOPSO algorithm 

large-scale instances Small-scale instances 
Exp. 

No 
SAW SM DM MID SAW SM DM MID 

0.52700 0.45064 0.81094 0.53906 0.57610 0.5522 1.34863 0.27388 1 

0.43065 0.20986 0.58461 0.43745 0.53610 0.48504 1.41574 0.33348 2 

0.38904 0.17456 0.466 0.35448 0.52660 0.51294 1.23353 0.30859 3 

0.39651 0.76546 0.56656 0.46811 0.62734 0.21384 1.17547 0.27764 4 

0.42192 0.07767 0.48333 0.42072 0.59504 0.60634 1.35929 0.25634 5 

0.39213 0.05285 0.38438 0.46444 0.57401 0.30159 1.11772 0.28280 6 

0.50707 0.32777 0.70601 0.35588 0.59481 0.41777 1.02463 0.23625 7 

0.61380 0.50740 0.91768 0.37360 0.61373 0.46606 1.15561 0.23238 8 

0.27286 0.37299 0.35300 0.56367 0.79680 0.37566 2.99631 0.32769 9 

0.34497 0.45887 0.43483 0.38316 0.46571 0.53969 1.23469 0.38813 10 

0.27974 0.16729 0.29514 0.42219 0.56673 0.51319 1.35814 0.28708 11 

0.54169 0.41358 0.78210 0.37123 0.54223 0.48273 1.25357 0.29900 12 

0.52968 0.12743 0.73062 0.43040 0.51937 0.38180 1.06857 0.31011 13 

0.28690 0.22514 0.22395 0.25464 0.54295 0.63242 0.94044 0.24685 14 

0.26089 0.88024 0.34508 0.55618 0.53275 0.47945 0.94358 0.26556 15 

0.58566 0.02131 0.36141 0.27211 0.63844 0.67435 1.42896 0.23097 16 

0.56143 0.34361 0.83954 0.43959 0.60433 0.66577 1.38972 0.24985 17 

0.38074 0.92815 0.56000 0.54707 0.60386 0.47978 1.21921 0.24382 18 

0.29918 0.5588 0.35300 0.37627 0.60457 0.65379 1.42626 0.25425 19 

0.31365 0.23755 0.36141 0.39035 0.57357 0.56698 1.17944 0.25452 20 

0.44650 0.73051 0.64349 0.42824 0.56612 0.50194 1.14895 0.26162 21 

0.56368 0.42838 0.83816 0.40832 0.53669 0.42385 1.11139 0.29132 22 

0.56067 0.72123 0.86082 0.46418 0.62313 0.62948 1.08591 0.21225 23 

0.39287 0.70837 0.57315 0.52264 0.55299 0.39992 1.20283 0.29283 24 

0.46140 0.27099 0.64633 0.42476 0.59695 0.59216 1.08190 0.22792 25 

0.47013 0.69651 0.68890 0.43836 0.55093 0.30777 1.20092 0.31730 26 

0.72157 0.16449 1.09297 0.42680 0.54181 0.59754 1.17123 0.27695 27 

0.44267 0.40820 0.58901 0.42718 0.57791 0.49829 1.26935 0.27553 Average 

 

The Taguchi design is performed as shown in Table 3. Figs. 3 and 4 show the main 

impacts of S/N ratio values for different levels of each parameter based on different problem 

sizes. According to the S/N plot of each parameter, the maximum value is selected. 

 

 
Fig. 3. Impact of S/N ratios in MOPSO on small-sized instances 
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Fig. 4. Impact of S/N ratios in MOPSO on large -sized instances 

 

According to Figs. 3 and 4, suggested parameter values for the MOPSO algorithm for 

small and large-sized instances are selected and shown in Table 4. Also, by testing the initial 

data, the number of iterations is set to 100 for small-sized and 200 for large instances. 

 
Table 4. Optimal values for MOPSO algorithm parameters 

Parameters 

Size       W Particle size Iteration 

1 1.5 0.6 75 100 Small 

1.5 2 0.7 120 200 Large 

 

Parameter setting for the proposed MOSA algorithm 

As shown in Table 5, two parameters are considered as controllable factors in 3 levels for 

the MOSA algorithm. Similarly, the L9 design is used according to the Taguchi Orthogonal 

Array as shown in Table 6. The rest of the steps are the same as the previous section. 

 
Table 5. Parameters and candidate levels for the MOSA algorithm 

Large-scale levels 

(Instances 16-25) 

Small-scale levels 

(Instances 1-15) 
Parameter 

{100, 200, 300} {100, 200, 300} Initial temperature (  ) 

{0.4, 0.6, 0.8} {0.4, 0.6, 0.8} cooling ratio ( ) 

 
Table 6. SAW values for designed experiments for the MOSA algorithm 

Large-sized instances Small-sized instances 
Exp. No 

SAW SM DM MID SAW SM DM MID 

0.25950 0.44562 0.53036 0.47898 0.98752 0.24551 1.08766 0.23008 1 

0.6407 0.08487 0.65428 0.51863 0.80641 0.31374 1.21987 0.21787 2 

0.16471 0.66666 0.28133 0.53641 0.51271 0.54018 1.20272 0.24253 3 

0.91222 0.05248 0.66192 0.51532 0.69635 0.36847 1.10763 0.21018 4 

0.28091 0.26334 0.30655 0.32609 0.78605 0.31307 0.94221 0.23072 5 

0.40451 0.33222 0.91872 0.33232 0.51994 0.51154 0.97413 0.22675 6 

0.24493 0.46998 0.48429 0.46468 0.57553 0.46759 1.19653 0.23297 7 

0.24917 0.56674 0.55545 0.46671 0.80430 0.31399 1.21987 0.23218 8 

0.30177 0.43654 0.64547 0.37724 0.47907 0.59478 1.19265 0.20625 9 

0.38426 0.36871 0.55981 0.44626 0.68532 0.40765 1.12703 0.22550 Average 

 

According to Table 5, the impact of S/N values for each size are as illustrated in Figs. 5 

and 6. 
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Fig. 5. Impact of S/N ratios in MOSA on small-sized instances 

 

 
Fig. 6. Impact of S/N ratios in MOSA on large-sized instances 

 

The suggested values of the MOSA algorithm parameters are summarized in Table 7. Also, 

by testing the initial data, the number of iterations is equal to 150 for small-sized instances 

and 200 for large-sized instances, and the number of internal loop iterations is 5 and 15 for 

small and large-sized instances, respectively. 

 
Table 7. Optimal values for MOPSO algorithm parameters 

Parameters 

Size 
     

Internal loop 

iterations 
Iteration 

0.8 300 5 150 Small 

0.8 300 15 200 Large 

 

Computational results 

 

In this section, first, a real-world case study is investigated for validating the proposed MILP 

model and the proposed algorithms. Afterward, several random instances are generated for 

evaluating the performance of the proposed approaches. 

 

Case study 

In this section, a real-world case in Anhui Province of China is used for validating the 

proposed approaches. This case study is retrieved from Zhang et al. [35] which considers a 
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batch of hollow shafts. In this system, each job undergoes two processes: the turning process, 

and then the milling process. At first, the turning process is performed by one of the identical 

parallel machines, and then, one of the unrelated milling machines mills the keyway of the 

job. There are 20 jobs that should be processed. There are two lathes of turning machines with 

different spindle speeds (   {        }), and two milling machines with a fixed spindle 

speed. 

The TOU pattern is implemented in that province as shown in Table 8. A 24-hour time 

horizon is considered where time zero refers to 8 am. In this study, we consider stage 2, 

(unrelated milling machines). Table 9 shows the processing time for these jobs on each 

machine and the energy consumption rate of jobs on machines. Since Zhang et al. [35] 

ignored the setup times, we considered them random with discrete uniform distribution,  

  [     ]. 
 

Table 8. The TOU tariffs used for experiments [35] 

Period type Time periods Electricity price (CNY/kwh) 

On-peak 9:00-12:00, 17:00-22:00 1.1236 

Mid-peak 8:00-9:00, 12:00-17:00, 22:00-23:00 0.7493 

Off-peak 23:00-8:00 0.4703 

 

Table 9. The data of real-world case study [35] 

Job ( )                               Job ( )                               

1 1 1 3 17 11 1.9 0.7 4 16 

2 2.1 0.7 6 16 12 0.9 1.1 3 14 

3 1.9 0.8 3 14 13 1.7 1 5 19 

4 0.6 0.8 7 22 14 2.5 0.5 6 14 

5 1 1.1 4 19 15 1.6 0.9 7 7 

6 1.4 0.6 5 14 16 1.3 1.3 5 21 

7 1.5 0.9 8 21 17 0.9 1.5 6 26 

8 1.1 1.3 6 9 18 1.6 1.2 7 21 

9 1.3 0.7 6 16 19 2.5 0.6 4 12 

10 2 0.8 7 22 20 1 0.9 5 10 

 

 The trade-off between TEC and      

The trade-off between TEC and      is shown in Fig. 7. According to the Pareto front 

obtained from the  -constraint method, the cost of energy consumption decreases with 

increasing makespan. During on-peak and mid-peak periods, the cost reduction is relatively 

large and it is because of the assignment of jobs to machines with lower consumption rates, 

which processing is done slower and needs lower energy consumption. In the off-peak period, 

the cost reduction is relatively small and the reason is the low cost of energy consumption in 

this period. According to the trade-off between our objective functions, manufacturers can 

determine the appropriate assignment of jobs to machines and their sequences under TOU 

tariffs, depending on the desired cost. Also, as shown in Fig. 7, the length of the Pareto front 

is longer in the off-peak period and can encourage manufacturers to move their electricity 

usage from on-peak to off-peak times. Applying energy-efficient scheduling under TOU 

tariffs reduces energy consumption and energy consumption costs which can lead to a 

reduction in     emission too. 

 



106  Karimi et al. 

 
Fig. 7. The trade-off between TEC and      

 

 Impact of considering sequence-dependent setup times  

The sequence of jobs based on the lowest makespan is shown in Fig. 8. Now, if we ignore 

sequence-dependent setup times and solve the problem, it is observed that the sequence of 

jobs is different from the previous case. Applying the sequence-dependent setup times for the 

obtained sequence in Fig. 9 will result in the sequence shown in Fig. 10 and objective 

functions (    =10.7, TEC=172.0124) are larger than the case in Fig. 8 (    =10.1, 

TEC=168.0429). So, by ignoring sequence-dependent setup times, makespan increases by 5% 

and energy consumption costs increase by 2% and can result in a non-optimal solution. 

 

 
Fig. 8. The sequence of jobs with the lowest makespan 

 

 
Fig. 9. The sequence of jobs without consideration of setup times 
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Fig. 10. The sequence of jobs in Fig. 9. with consideration of setup times 

 

 Comparison of the proposed algorithms 

Regarding results shown in Fig. 11, there is a logical relationship between the cost objective 

function and the completion time, which indicates the logical treatment of the model. In other 

words, the longer the completion time, the lower the energy consumption cost. According to 

the results, it can be concluded that the MOPSO and MOSA algorithms operate very close to 

the exact  -constraint method, and there is an insignificant gap between the MOPSO and the 

MOSA algorithms compared to the  -constraint method, ranging from 0 to 4.54% for MOSA, 

and 0 to 6.8% for MOPSO algorithm. 

 

 
Fig. 11. The Pareto front for the real-world case study 

 

Specifications of random test instances 

To compare the results of MOPSO, MOSA, and the  -constraint method, three random 

problem categories in different sizes (small, medium, and large) were generated and solved 

and the obtained results have been compared. 

In Table 10, the number of machines and jobs (     ), the process duration of each job on 

each machine (   ), the energy consumption rate of each job on each machine (   ), duration 

of the studied periods (   ), energy price for each period (  ) and the setup time of every job 

on each machine according to its previous job (    ) are shown, respectively. 

The meaning of U in Table 10 is random data with discrete uniform distribution. Also, 

sequence-dependent setup times, for instances 1-3 are generated from a discrete uniform 

distribution to analyze their effect, and for the rest of the instances are considered random and 

fixed. 
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Validation 

For validating the proposed algorithms, 25 random instances are solved using the  -

constraint method, MOPSO, and MOSA. The results are presented in Table 11 and MID, SM, 

DM, and CPU time are reported. 

 
Table 10. Specifications of random test instances 

     (hour) 
   

($/kilowatt-

hour) 

   (hour)     (kilowatt)     (hour)  *  
Instance 

No. 
Size 

U~ [0,1] U~ [1, 5] {3, 4, 5} U~ [1, 3] U~[1, 5] 2*5 1 

Small 

 

U~ [0,2] U~ [1, 5] {3, 4, 5} U~ [1, 3] U~ [1, 5] 2*5 2 

U~ [0,3] U~ [1, 5] {3, 4, 5} U~ [1, 3] U~ [1, 5] 2*5 3 

2 U~ [1, 5] {4, 5, 6} U~ [1, 3] U~ [1, 5] 3*5 4 

1 U~ [1, 3] {3, 4, 5} U~ [1, 3] U~ [1, 3] 4*5 5 

2 U~ [1, 5] {3, 4, 5} U~ [1, 3] U~ [1, 5] 4*5 6 

1 U~ [1, 3] {4, 5, 6} U~ [1, 3] U~ [1, 3] 4*8 7 

1 U~ [1, 5] {4, 5, 6} U~ [1, 3] U~ [1, 3] 4*8 8 

1 U~ [1, 3] {5, 6, 7, 8} U~ [1, 5] U~ [1, 3] 4*10 9 

1 U~ [1, 5] {5, 6, 7, 8} U~ [1, 5] U~ [1, 5] 4*10 10 

2 U~ [1, 3] {5, 6, 7, 8} U~ [1, 3] U~ [1, 3] 5*10 11 

2 U~ [1, 5] {5, 6, 7, 8} U~ [1, 5] U~ [1, 5] 5*10 12 

2 U~ [1, 5] {5, 6, 7, 8} U~ [1, 3] U~ [1, 5] 5*12 13 

Medium 

2 U~ [1, 5] {6, 6, 8, 8} U~ [1, 5] U~ [1, 5] 5*12 14 

2 

1 

U~ [1, 7] 

U~ [1, 3] 

{6, 6, 8, 8} 

{6, 6, 8, 8} 

U~ [1, 7] 

U~ [1, 5] 

U~ [1, 5] 

U~ [1, 3] 

5*15 

5*30 

15 

16 

1 U~ [1, 3] {10, 12, 15, 20} U~ [1, 3] U~ [1, 3] 5*40 17 

1 U~ [1, 5] {15, 15, 20, 20} U~ [1, 5] U~ [1, 5] 5*45 18 

2 U~ [1,3] {20,20,20,25,25} U~ [1,7] U~ [1,3] 8*60 19 

Large 

2 U~ [1,7] {20, 20, 20, 25, 25} U~ [1, 7] U~ [1, 3] 8*80 20 

1 U~ [1,7] {50, 60, 70, 80, 90} U~ [1, 7] U~ [1, 5] 10*100 21 

1 U~ [1,7] {50, 60, 70, 80, 90} U~ [1, 7] U~ [1, 5] 10*150 22 

1 U~ [1,7] {50, 60, 70, 80, 90} U~ [1, 7] U~ [1, 5] 20*180 23 

1 U~ [1,5] {50, 60, 70, 80, 90} U~ [1, 7] U~ [1, 3] 25*200 24 

1 U~ [1,7] {90, 90, 90, 90, 90} U~ [1, 7] U~ [1, 5] 35*250 25 

 

As shown in Table 11, according to the values obtained by the exact method for instances 

1-3 as the sequence-dependent setup times increase, MID metric increases and gets worse. In 

terms of DM metric, the value reported for the  -constraint method decreases with increasing 

setup times. In terms of SM metric, the value of this metric gets worse with increasing setup 

times. CPU time decreases with increasing setup times. 

According to the MID metric in Table 11, MOSA performs better than MOPSO in most of 

the instances and the distance of Pareto solutions from an ideal point obtained by MOSA are 

less than MOPSO. MOPSO algorithm has better performance than MOSA algorithm in DM 

metric. This means that the MOPSO algorithm can generate Pareto solutions with a wider 

range of possible solutions. In SM metric, the MOSA algorithm shows better performance. In 

other words, the distance between two consecutive Pareto solutions obtained by MOSA is less 

than the MOPSO algorithm. 

Moreover, it can be seen that the CPU time of the  -constraint method is increased 

significantly if the size of the problem is increased until in sample 16 the  -constraint method 

is not able to solve the problem within the considered time limit. However, meta-heuristic 
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algorithms can solve the problem in a much shorter time. In addition, the MOSA algorithm 

requires less time to find the Pareto fronts, and this can be considered as an advantage of this 

algorithm compared to the MOPSO. For a more detailed comparison of these algorithms, the 

SAW criterion is depicted in Fig. 12 for instances 1 to 15. 

 
Table 11. Comparison the results of   –constraint, MOPSO and MOSA 

 

CPU time (s) DM SM MID 
Instance 

No. 

MOSA MOPSO 
 -

constraint 
MOSA MOPSO 

 -

const. 
MOSA MOPSO 

 -

const. 
MOSA MOPSO  -const.  

23.12 29.51 0.3 1.34 1.13 1.41 0.41 0.5 0.3 0.46 0.49 0.44 1 

21.46 24.3 0.27 0.87 1.17 1.32 0.28 0.36 0.33 0.52 0.54 0.49 2 

17.87 23.26 0.2 0.77 1.36 1.17 0.38 0.41 0.36 0.56 0.59 0.52 3 

35.49 53.32 0.16 0.72 0.86 1.03 0.22 0.27 0.21 0.66 0.82 0.64 4 

31.91 44.92 0.2 0.75 0.75 0.99 0.38 0.42 0.32 0.61 0.67 0.55 5 

40.63 43.53 1.53 0.54 0.69 0.89 0.36 0.45 0.26 0.72 0.75 0.66 6 

48.3 137.42 10.66 0.79 0.87 0.82 0.56 0.66 0.41 0.67 0.71 0.54 7 

89.8 138.96 203.55 0.82 0.9 1 0.48 0.54 0.37 0.81 0.88 0.69 8 

93.65 122.4 209.48 0.76 0.82 0.8 0.4 0.47 0.33 0.79 0.69 0.54 9 

119.7 179.52 178 0.68 0.79 0.98 0.32 0.38 0.29 0.59 0.65 0.43 10 

121.82 105.51 168.97 0.58 0.76 0.5 0.33 0.4 0.31 0.6 0.67 0.48 11 

125.69 104.82 1896.19 0.8 0.89 0.79 0.35 0.46 0.29 0.68 0.74 0.62 12 

130.63 150.3 2000.19 0.64 0.86 1.4 0.37 0.58 0.27 0.7 0.74 0.68 13 

145.24 155.79 2050.28 0.72 0.83 1.01 0.35 0.44 0.26 0.69 0.72 0.59 14 

161.92 187.5 3600 0.69 0.85 0.98 0.44 0.59 0.34 0.7 0.73 0.61 15 

346.6 360.37 - 0.74 0.82 - 0.32 0.53 - 0.69 0.74 - 16 

352.74 379.85 - 0.69 0.79 - 0.39 0.42 - 0.54 0.61 - 17 

403.98 411.4 - 0.75 0.82 - 0.32 0.4 - 0.63 0.59 - 18 

497.07 520.2 - 0.52 0.67 - 0.27 0.37 - 0.67 0.65 - 19 

501.36 488.3 - 0.72 0.83 - 0.33 0.45 - 0.71 0.66 - 20 

706.53 1778.57 - 0.65 0.75 - 0.24 0.35 - 0.7 0.69 - 21 

1021.87 2063.18 - 0.61 0.72 - 0.34 0.42 - 0.61 0.65 - 22 

1789.23 2472.31 - 0.73 0.8 - 0.32 0.37 - 0.59 0.62 - 23 

1985.64 3156.45 - 0.76 0.89 - 0.32 0.4 - 0.62 0.61 - 24 

2607.8 3459.02 - 0.56 0.79 - 0.36 0.49 - 0.58 0.6 - 25 

516.25 750.62 859.93 0.69 0.80 0.93 0.35 0.44 0.30 0.66 0.69 0.58 Average 
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Fig. 12. The SAW criterion for instances 1 to 15 

 

As shown in Fig. 12, it is observed that the metaheuristic algorithms used in this study are 

very close to the exact solution and therefore have appropriate efficiency in finding near-

optimal solutions. So, they can be used for solving large-size problems where the  -constraint 

method is incapable. 

There is a gap between results of the  -constraint method and those of MOPSO algorithm 

ranging from 0 to 12%. The MOSA algorithm shows a 0 to 9% gap. These gaps show that our 

proposed algorithms can yield reliable Pareto solutions. 

 

Conclusion  
 

In this research, an unrelated parallel machine scheduling problem under the TOU tariff in 

which the electricity price varies throughout a day is considered. Sequence-dependent setup 

time is also considered to make the problem assumptions more realistic. A bi-objective MIP 

model is presented for minimizing energy consumption costs and also the makespan. Also, a 

real-world case study is investigated for validating the proposed solution approaches. Because 

the  -constraint method was incapable to solve large-sized problems in a 3600 seconds limit, 

MOPSO and MOSA algorithms are used to find near-optimal solutions for large-sized 

instances. The parameters of each algorithm are adjusted using the Taguchi method. To assess 

the performance of our algorithms, 25 randomly generated instances with different sizes are 

examined. CPU time, Mean Ideal Distance, Spacing and Diversification metrics of these 

algorithms are compared with the  -constraint method. The results indicate that the MOSA 

performs better than the MOPSO. 

In terms of practical application, the proposed model and methods provide production 

managers with decision-making tools to make logical trade-offs between energy consumption 

cost and makespan under TOU policy in production planning. An appropriate response to the 

TOU policy can significantly reduce energy consumption costs and help to reduce     

emissions. 

Since sequence-dependent setup times are unavoidable in production environments, they 

have been considered in the proposed mathematical modeling. By considering sequence-

dependent setup times, the resulted sequence for jobs is so different from the situation that 

they have been ignored. This difference in sequences can lead to inaccurate and not optimal 

answers. So, considering sequence-dependent setup times in the production plan can help 

production managers get more reliable answers and prevent losses. 
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Considering the due date of jobs and process preemption are two possible fields for future 

research. Adding other objective functions such as minimizing the amount of     emitted, 

can be considered too. It is also possible to use other multi-objective meta-heuristic methods 

for the research problem and compare their performance with our proposed algorithms. 

Finally, considering the possibility of breakdown for the production line after processing or 

during processing seems interesting. 
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