تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,121,531 |
تعداد دریافت فایل اصل مقاله | 97,228,641 |
تخمین سرعت میانگین موج برشی V_sz و تراکمی V_pz با استفاده از رابطه طولموج _ عمق حاصل از تحلیل امواج سطحی | ||
فیزیک زمین و فضا | ||
مقاله 2، دوره 47، شماره 1، اردیبهشت 1400، صفحه 13-26 اصل مقاله (915.53 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2021.305097.1007229 | ||
نویسندگان | ||
ساسان قوامی1؛ حمیدرضا سیاهکوهی* 2 | ||
1دانشجوی کارشناسی ارشد، گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران | ||
2استاد، گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
سرعت موج برشی ( ) در پروژههای مهندسی (همچون عمران، ژئوتکنیک و ژئوفیزیک) برای تعیین پارامترهای دینامیکی خاک و طبقهبندی آن استفاده میشود. میانگین سرعت موج برشی تا عمق 30 متر ( ) در ژئوتکنیک برای ارزیابی روانگرایی خاک و در مهندسی زلزله برای تعیین پریود خاک، ضریب بزرگنمایی ساختگاه و تعیین کاهندگی کاربرد دارد. معمولاً سرعت میانگین موج برشی از مدل سرعت موج برشی حاصل از وارون منحنی پاشش، لرزه درونچاهی یا شکست مرزی بهدست میآید. متأسفانه وارونسازی منحنی پاشش برای تخمین سرعت موج برشی بخش زمان بر فرایند تحلیل امواج سطحی است. در این مطالعه با ارائه روشی بدون نیاز به وارون منحنیهای پاشش، نه تنها سرعت میانگین موج برشی ( ) بلکه سرعت میانگین موج تراکمی ( ) را بهطور مستقیم از منحنیهای پاشش، تا عمق نفوذ موج سطحی، تخمین میزنیم. برای این منظور نیازمند رابطهای بین طولموجهای مختلف موج سطحی و عمقهای بررسی آنها هستیم. برآورد این رابطه نیاز به مدل سرعت موج برشی (مرجع) در منطقه مورد مطالعه دارد که میتواند از دادههای چاه، پروفیل شکست مرزی یا از وارون منحنی پاشش بهدست آید. با توجه به وابستگی مقادیر ( ) و حساسیت رابطة برآوردشده به نسبت پواسون در ادامه ضمن برآورد نسبت پواسون، پروفیل سرعت میانگین موج تراکمی تا عمق z ( ) از پروفیل ( ) تخمین زده میشود. نتایج اعمال روش روی دادههای لرزهای واقعی و مصنوعی نشان داد که میتوان سرعت میانگین موج برشی و تراکمی را با عدمقطعیت کمتر از 10 درصد در ساختگاههایی با تغییرات جانبی خیلی زیاد تخمین زد. | ||
کلیدواژهها | ||
آنالیز امواج سطحی؛ منحنی پاشش؛ رابطه طولموج-عمق؛ سرعت میانگین موج برشی؛ سرعت میانگین موج تراکمی | ||
مراجع | ||
آئیننامه طراحی ساختمانها در برابر زلزله استاندارد 2800 ایران ، 1384، کمیته دائمی بازنگری آیین نامه طراحی ساختمانها در برابر زلزله، ویرایش سوم، مرکز تحقیقات ساختمان و مسکن.
Aki, K. and Richards, P. G., 2002, Quantitative seismology, Second Edition, University Science Books. Ampuero, J. P., 2012, A Spectral Element Method tool for 2D wave propagation and earthquake source dynamics. California Institute of Technology Seismological Laboratory. Bard, P.-Y., 1994, Effects of surface geology on ground motion: recent results and remaining issues, In Proc. of the 10th European Conf. on Earthquake Engineering, Vienna, 305-323. Bergamo, P. and Socco, L. V., 2016, P- and S-wave velocity models of shallow dry sand formations from surface wave multimodal inversion: Geophysics, 81, no. 4, R197–R209, doi: 10.1190/geo2015-0542.1. Brown, L. T., Diehl, J. G. and Nigbor, R. L., 2000, A simplified procedure to measure average shear-wave velocity to a depth of 30 meters (VS;30): Presented at the 12th World Conference on Earthquake Engineering. BSSC, 1994, NEHRP Recommended provisions for the development of seismic regulations for new buildings, part I: Provisions, Building Seismic Safety Council, Federal Emergency Management Agency, Washington D.C. Comina, C., Foti, S., Boiero, D. and Socco, L. V., 2011, Reliability of VS;30 evaluation from surface waves tests: Journal of Geotechnical and Geoenvironmental Engineering, 137, 579–586, doi: 10.1061/(ASCE)GT.1943- 5606.0000452. Dobry, R., 2000, New site coefficients and site classification system used in recent building seismic code provisions, earthquake spectra, 16(1), 41-67. Ernst, F., 2008, Multi-mode inversion for P-wave velocity and thick nearsurface layers: 14th European Meeting of Environmental and Engineering Geophysics, EAGE, Extended Abstracts, A13, doi: 10.3997/2214-4609 .20146236. Foti, S. and Strobbia, C., 2002, Some notes on model parameters for surface wave data inversion: Symposium on the Application of Geophysics to Engineering and Environmental Problems SAGEEP, SEI6, doi: 10 .4133/1.2927179. Gouveia, F., Gomes, R. C. and Lopes, I., 2019, Shallow and in depth seismic testing in urban environment: A case study in Lisbon Miocene stiff soils using joint inversion of active and passive Rayleigh wave measurements. Journal of Applied Geophysics, 169, 199-213. Haney, M. M. and Tsai, V. C., 2015, Non perturbational surface-wave inversion: A Dix-type relation for surface waves: Geophysics, 80, no. 6, EN167–EN177, doi: 10.1190/geo2014-0612.1. Hayashi, K., Craig, M., Kita, T. and Inazaki, T., 2015, CMP spatial autocorrelation analysis of multichannel passive surface-wave data. In SEG Technical Program Expanded Abstracts 2015 (pp. 2200-2204). Society of Exploration Geophysicists. Ikeda, T., Tsuji, T., Konishi, C. and Saito, H., 2020, Extracting surface wave dispersion curves from two-station microtremor analysis in heterogeneous ambient noise wavefield. In SEG Technical Program Expanded Abstracts 2020. Society of Exploration Geophysicists, 3442-3446. Konno, K. and Kataoka, S., 2000, New method for estimating the average s-wave velocity of the ground, Proceedings of the 6th International Conference on Seismic Zonation, Palm Springs, California, November, 2000. Kramer, S.L., 1996, Geotechnical earthquake engineering, Pearson Education India. Leong, E. C. and Aung, A. M.W., 2012, Weighted average velocity forward modelling of Rayleigh surface waves: Soil Dynamics and Earthquake Engineering, 43, 218–228, doi: 10.1016/j.soildyn.2012.07.030. Li, P., Zhang, K., Zhang, Y. and Yan, Z., 2016, Near-surface shear-wave velocity estimation based on surface-wave inversion. The Leading Edge, 35(11), 940-945. Mulargia, F., Castellaro, S., 2009, Experimental uncertainty on the Vs(z) profile and seismic soil classification. Seismol. Res. Lett. 80 (6), 985-988. Murphy, J. R. and Shah H. K., 1988, An analysis of the effects of site geology on the characteristics of near-field Rayleigh waves, Bull. Seism. Soc. Am. 78, 64-82. Nazarian, S. and Stokoe, K. H., 1984, In-situ shear wave velocity from spectral analysis of surface waves. In: Eighth World Conference on Earthquake Engineering, 3, 31-38. Oda, Y., Hauser, E. C. and Gilliland, S., 2019, S-wave velocity structure using microtremor array measurements: a case study at Huffman Dam, OH, US. In The 13th SEGJ International Symposium, Tokyo, Japan, 12-14 November 2018. Society of Exploration Geophysicists and Society of Exploration Geophysicists of Japan, 347-350. Okada, H., 2003, The Microtremor Survay Method. Society of Exploration Geophysicists, USA. Olafsdottir, E. A., Erlingsson, S. and Bessason, B, 2018, Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils. Canadian Geotechnical Journal, 55(2), 217-233. Park, C. B., Miller, R. D., Xia, J., 1999, Multichannel analysis of surface waves. Geophysics, 63 (3), 800-808. Power, M., Chiou, B. S. J., Abrahamson, N. A., Bozorgnia, Y., Shantz, T., and Roblee, C, 2008, An overview of the NGA project, Earthquake Spectra, 24, 3–21. Sambridge, M., 1999, Geophysical inversion with a neighbourhood algorithm—I. Searching 833 a parameter space: Geophysical Journal International, 138, 479–494 Scherrer, E. F., 1999, Static corrections for seismic reflection surveys. ISBN 1-56080-080-1. Serdyukov, A. S., Yablokov, A. V., Duchkov, A. A., Azarov, A. A. and Baranov, V. D., 2019, Slant f-k transform of multichannel seismic surface wave data. Geophysics, 84(1), A19-A24. Socco, L. V., Foti, S. and Boiero, D., 2010, Surface wave analysis for building near surface velocitymodels: Established approaches and new perspectives: Geophysics, 75, no. 5, 75A83–75A102, doi: 10.1190/1.3479491. Socco, L. V. and C. Comina, 2015, Approximate direct estimate of S-wave velocity model from surface wave dispersion curves: 21st Annual International Conference and Exhibition, EAGE, Extended Abstracts, A09. Socco, L. V., Mabyalaht, G. and Comina, C., 2015, Robust static estimation from surface wave data. In SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, 5222-5227. Strobbia, C., 2003, Surface wave methods: acquisition, processing and inversion. Wathelet, M., Jongmans D. and Ohrnberger, M., 2004, Surface wave inversion using a direct search algorithm and its application to ambient vibration measurements, Near Surface Geophysics 2, 211-221. Xia, J., Miller, R. D., Park, C. B. and Tian, G., 2003, Inversion of high frequency surface waves with fundamental and higher modes: Journal of Applied Geophysics, 52, 45–57, doi: 10.1016/S0926-9851(02)00239-2. Yamanaka, H., Cimoto, K., Miyake, H., Korenaga, M., Tsuno, S. and Senna, S., 2019, Estimation of S-wave velocity structure around Fujikawa fault zone, Japan, from microtremor and earthquake records for seismic hazard assessment. In The 13th SEGJ International Symposium, Tokyo, Japan, 12-14 November 2018. Society of Exploration Geophysicists and Society of Exploration Geophysicists of Japan, 463-466. | ||
آمار تعداد مشاهده مقاله: 1,482 تعداد دریافت فایل اصل مقاله: 774 |