تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,101,210 |
تعداد دریافت فایل اصل مقاله | 97,207,962 |
On the expected weight of the theta graph on uncertain points | ||
Journal of Algorithms and Computation | ||
دوره 52، شماره 1، شهریور 2020، صفحه 163-174 اصل مقاله (378.76 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2020.76684 | ||
نویسندگان | ||
Behnam Iranfar1؛ Mohammad Farshi2 | ||
1Department of Computer Science, Yazd University, Yazd, Iran | ||
2Department of Mathematical Sciences, Yazd University, Yazd, Iran | ||
چکیده | ||
Given a point set $S\subset \mathbb{R}^d$, the $\theta$-graph of $S$ is as follows: for each point $s\in S$, draw cones with apex at $s$ and angle $\theta$ %fix a line through $p$ at each cone and connect $s$ to the point in each cone such that the projection of the point on the bisector of the cone is the closest to~$s$. One can define the $\theta$- graph on an uncertain point set, i.e. a point set where each point $s_i$ exists with an independent probability $\pi_i \in (0,1]$. In this paper, we propose an algorithm that computes the expected weight of the $\theta$-graph on a given uncertain point set. The proposed algorithm takes $O(n^2\alpha(n^2,n)^{2d})$ time and $O(n^2)$ space, where $n$ is the number of points, $d$ and $\theta$ are constants, and $\alpha$ is the inverse of the Ackermann's function. | ||
کلیدواژهها | ||
uncertain points؛ expected weight | ||
آمار تعداد مشاهده مقاله: 314 تعداد دریافت فایل اصل مقاله: 208 |