
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

On the expected weight of the theta graph on
uncertain points

Behnam Iranfar∗1 and Mohammad Farshi†2

1,2Combinatorial and Geometric Algorithms Lab, Department of Mathematical Sciences, Yazd
University, Yazd, Iran

ABSTRACT ARTICLE INFO

Given a point set S ⊂ Rd, the θ-graph of S is as follows:
for each point s ∈ S, draw cones with apex at s and angle
θ and connect s to the point in each cone such that the
projection of the point on the bisector of the cone is the
closest to s. One can define the θ- graph on an uncertain
point set, i.e. a point set where each point si exists with
an independent probability πi ∈ (0, 1]. In this paper,
we propose an algorithm that computes the expected
weight of the θ-graph on a given uncertain point set.
The proposed algorithm takes O(n2α(n2, n)2d) time and
O(n2) space, where n is the number of points, d and θ
are constants, and α is the inverse of the Ackermann’s
function.

Article history:
Received 19, August 2019
Received in revised form 15,
April 2020
Accepted 14 May 2020
Available online 01, June 2020

Keyword: uncertain points , expected weight

AMS subject Classification: 68W05, 68W40

1 Introduction

In many applications, such as sensor databases, mobile object tracking, computer vision
or location-based services, the existence or location of the data is uncertain, but we can
use statistical information. There are several models for uncertain data. Some of them

∗biranfar@gmail.com
†Corresponding author:M. Farshi. Email: mfarshi@yazd.ac.ir

Journal of Algorithms and Computation 52 issue 1, June 2020, PP. 163– - 174

164 B. Iranfar / JAC 52 issue 1, June 2020, PP. 163– - 174

assign an area to each point which represents the area that the point resides, but the
exact position of the point in its corresponding area is unknown. In the tuple model of
uncertain data, each input point has a fixed location but it only exists probabilistically.
The input is a pair (S,Π) such that S = {s1, s2, . . . , sn} is a set of n points (sites) in Rd,
and Π = {π1, π2, . . . , πn} is a probability vector with the interpretation of that sites.
The geometric structures on uncertain data are also interesting because they have wide
application in solving problems. Theta graphs have many applications, including wire-
less networking [4], motion planning [6], real-time animation [8], and minimum-spanning
tree construction [19]. The properties of a geometric graph influence the time and space
complexity of the problem that uses the structure. For example, if one wants to construct
a network on a set of points, then the total cost of the network, i.e. the sum of all edge
weights of the graph, is an important parameter. For uncertain data, the properties of the
structures on the data are not deterministic, but one can compute the expected properties
of the structures on uncertain data, see for example [9, 13].

Figure 1: One step of constructing θ-graph, for θ = π/4. Dashed red lines are borders of
cones and dotted blue lines are `c.

For building the θ-graph for S ⊂ Rd and a given angle θ, divide the space around each
point p ∈ S into a set of cones C of maximum angle θ. The cones constructed by rotating
the horizontal line through p around the point p by angle iθ, where i is a natural number
between 0 and 2π/θ. For each cone c ∈ C we consider a line `c that passes through p and
inside the cone c. Then for each cone c ∈ C, the point p is connected to a point q ∈ S
that lies in cone c and minimizes the Euclidean distance between p and the projection of
q into the line `c of c, see Figure 1. For details see [14, Chapter 4]. The visualization of
the algorithm is available at [7], and one can see the steps of computing the θ-graph of a
point set given by the user.
In this paper, we study the problem of computing the expected weight of the θ-graph of a
given uncertain points [6, 10, 11]. The problem is very complicated and to the best of our
knowledge, no theoretical results have been reported. We propose an algorithm that com-

165 B. Iranfar / JAC 52 issue 1, June 2020, PP. 163– - 174

putes the expected weight of the θ-graph on a given uncertain point set in O(n2α(n2, n)2d)
time and O(n2) space, where n is the number of points, d and θ are constants, and α is
the inverse of the Ackermann’s function.

1.1 Related work.

Uncertainty has been studied in some articles in computational geometry. In 2013, Suri
et al. [16] have studied the most likely convex hull under the uncertain points and showed
that the most likely convex hull under the point model (tuple model) can be computed
in O(n3) time in d = 2 dimension, but it is NP-hard for d ≥ 3. Agarwal et al. [2], in
2014, have studied the problem of computing probability of query point lying inside the
convex hull, and their results have included both approximation and exact algorithm for
given uncertain points, their main result is an O(nd)-time algorithm for computing the
probability of convex hull membership. Xue et al. [18] investigated several computational
problem related to the stochastic convex hull. For diameter, they established the first de-
terministic 1.633-approximation algorithm with a complexity polynomial of time in both
n and d. In 2015, Zhang [20] have formulated two different nearest neighbors on uncertain
points: the expected nearest neighbor, where the expected distance between each input
point and a query point has been considered, and the probabilistic nearest neighbor.
Agarwal et al. [1] studied answering rang query over uncertain data. They build the in-
dex on a collection of point S in R (each represented by its probability density function)
with linear or near-linear size, where can report all point of S that lie in given interval
I with probability at least τ in logarithmic time. In [3], many algorithms were presented
for building an index on S so that for a d-dimensional query rectangle ρ, the expected
maximum value or the most-likely maximum value in ρ can be computed quickly.

2 The expected weight of the θ-graph

In this section, we will describe an algorithm for computing the expected weight of the
θ-graph (EWTG) of n points in Rd under uncertainty. The algorithm is similar to the
algorithm of building the (deterministic) θ-graph.
Let (S,Π) denote the uncertain points in d-dimensional space. For computing EWTG,
we must calculate portability of existing each edge and multiply it to its length. In other
words,

EWTG(S) =
∑

si,sj∈S, i<j

|sisj| × πi,j, (1)

where πi,j, for all si, sj ∈ S, is the probability of having the edge (si, sj) in the θ-graph.
Consider two points si, sj ∈ S, i 6= j in Rd. Let c be the cone with apex si that include
sj. We add a half plane to c, where this half plane determine by sj and orthogonal vector
(−1)× lc, we denote this region by Ri,j (see Fig. 2(a)).

Observation 2.1. The edge between two points si and sj exists if and only if

166 B. Iranfar / JAC 52 issue 1, June 2020, PP. 163– - 174

si sj

lc

Ri,j

(a)

si

sj

Ri,j

Rj,i

Ri,j ∩Rj,i

(b)

Figure 2: Illustration of Ri,j and Ri,j ∩Rj,i in the plane.

si sj

Ri,j

lC

(a)

sj

Ri,j ∩Rj,i

Ri,j

si

Rj,i

(b)

Figure 3: Illustration of Ri,j and Ri,j ∩Rj,i in 3-dimensional.

1. si and sj exist.

2. There is no point in Ri,j or Rj,i (see Fig. 2(b)).

More formally,

πi,j = πi × πj ×

 ∏
sm∈Ri,j

πm +
∏

sm∈Rj,i

πm −
∏

sm∈Ri,j∩Rj.i

πm

 , (2)

where πm = (1 − πm). Note that the last sentence subtracted because the points in
Ri,j ∩Rj,i considered twice in the previous terms of the equation.
By Equations (1) and (2), we have

EWTG(S) =
∑

si,sj∈S, i<j

|sisj|×πi × πj ×
 ∏
sm∈Ri,j

πm +
∏

sm∈Rj,i

πm −
∏

sm∈Ri,j∩Rj.i

πm

 . (3)

First, we describe an algorithm for computing

∑
si,sj∈S, i<j

|sisj| × πi × πj ×
 ∏
sm∈Ri,j

πm +
∏

sm∈Rj,i

πm

 . (4)

167 B. Iranfar / JAC 52 issue 1, June 2020, PP. 163– - 174

For each cone c ∈ Cκ, points are sorted based on the orthogonal projection onto lc.
Obviously, for each two points si, sj ∈ S, if i ≥ j, then Ri,j is empty, so we only need to
compute Ri,j, for i < j. Consider a cone ci ∈ Cκ. Let ci,sj be the cone ci transfered to a
point sj ∈ S.

Algorithm 1:

Input : Uncertain point set (S,Π)

Output:
∑

si,sj∈S, i<j

[
|sisj| × πi × πj ×

[∏
sm∈Ri,j

πm +
∏

sm∈Rj,i
πm

]]
1 Sum = 0;
2 for any cones ci, 1 ≤ i ≤ κ do
3 Project all points to lci ;
4 Sort the points based on its position on lci ;
5 for j = 1 to n− 1 do
6 µ = πj;
7 for k = j + 1 to n do
8 if sk ∈ csj then
9 Sum = Sum+ µ× πk × |sjsk|;

10 µ = µ× πk;

11 return Sum;

Lemma 2.2. Algorithm 1 computes the first part of Equation (4) in O(κn2) time and
O(n) space.

Proof. Algorithm 1 spends O(n) time for line 3 and O(n log n) time for line 4 and they
are repeated O(κ) times. It also spends O(1) time for lines 8 to 10, and these are repeated
O(κn2) times. So, Algorithm 1 requires O(κn2) time. We only save n (projection) points,
probability vector, Sum and µ. So, the algorithm needs O(n) space.

Now, we describe an algorithm for computing the last part of Equation (4), i.e.

∑
si,sj∈S, i<j

|sisj| × πi × πj × ∏
sm∈Ri,j∩Rj,i

πm

 . (5)

Definition 2.3. (Partial sum query) Given a d-dimensional array A with n entries from
a semigroup, a partial sum query problem is the problem of given a d-dimensional query
rectangle γ = [a1, b1]× · · · × [ad, bd], it computes

σ(A, γ) =
∑

(x1,x2,...,xd)∈γ

A[x1, x2, . . . , xd].

The partial-sum query problem is a special case of the classic orthogonal range searching
problem.

168 B. Iranfar / JAC 52 issue 1, June 2020, PP. 163– - 174

To convert computing
∏

sm∈Ri,j∩Rj,i
πm to a partial-sum query problem, we do the follow-

ing:

1. Any region Ri,j ∩Rj,i is converted to a d-dimensional rectangle.

2. The formula
∏

sm∈Ri,j∩Rj,i
πm converts to an operator in a semigroup.

Each cone of Cκ have f = 2d−1 faces. Let dji be the line passing through the origin that is
orthogonal to the j-th face of the cone ci. We define D = {dji : for 1 ≤ i ≤ κ and 1 ≤ j ≤
f}. These lines define a coordinate system that can be used to compute

∏
sm∈Ri,j∩Rj,i

πm.
or converting each region Ri,j ∩ Rj,i, for 1 ≤ i, j ≤ n and i 6= j, to a rectangle, we only
need to project all of point in S onto lines in D. New coordinates have at most

f × κ = 2d−1 × 2dmd−1 = O(2dd(d+1)/2(π/θ)d−1)

dimensions.
We assign the value πi to A[si], for all si ∈ S. This partial-sum query can be answered
by choosing the semigroup to be (R,×), where × denotes the standard real number
multiplication.

Algorithm 2:

Input : Uncertain point set (S,Π)

Output:
∑

si,sj∈S, i<j

[
|sisj| × πi × πj ×

∏
sm∈Ri,j∩Rj,i

πm

]
1 Sum = 0;
2 for i = 1 to n do
3 Transform point si to the new coordinate system;

4 for i = 1 to n− 1 do
5 for j = i+ 1 to n do
6 σ(A, γ) = the partial-sum for γ = Ri,j ∩Rj,i;
7 Sum = Sum+ |sisj| × πi × πj × σ(A, γ) ;

8 return Sum;

Theorem 2.4. [5] Given a semigroup of n variables in Rd and k ≥ 14d, there is a scheme
that computes any d-dimensional rectangle query in O(α(kn, n)d) time. Preprocessing this
scheme is used to k cells per variable and can be constructed in time proportional to its
size.

The function α(., .) is the inverse of Ackermann’s function defined by Tarjan [17].

Lemma 2.5. Algorithm 2 computes Equation (5) in O(n2α(n2, n)2
dd(d+1)/2(π/θ)d−1

) time
and O(n2) space.

169 B. Iranfar / JAC 52 issue 1, June 2020, PP. 163– - 174

Proof. Algorithm 2 uses O(n) time for line 3, and the second loop repeated O(n2) times.

Line 5 usesO(α(n2, n)2
dd(d+1)/2(π/θ)d−1

) time and therefore this line usesO(n2α(n2, n)2
dd(d+1)/2(π/θ)d−1

)
time, which dominates the time complexity of the other parts of the algorithm.
Algorithm 2 has to save n points, array A and the partial-sum queries. Since it performs
a query for each edge, the algorithm needs O(n2) space.

Theorem 2.6. Let S be a set of n uncertain points in Rd. The expected weight of the
θ-graph on S can be computed in O(n2α(n2, n)2

dd(d+1)/2(π/θ)d−1
) time using O(n2) space.

3 Improve the running time of the algorithm

In Section 2, for building set C of cones, we consider a hypercube H = [−1, 1]d with 2d
faces. The each face of H is partitioned to (d − 1)-dimensional hypercubes with side

length 2
m

, where m is

⌈√
2(d−1)
1−cos θ

⌉
. Each partition is called a subhypercube. These cones

are not simplicial because of subhypercubes were having 2d− 1 vertices define them.
In this section, we want to decrease the number of dimensional partial-sum query and
improve the running time complexity of Algorithm 2. First, we partition the cones to
simplex-cones such that each cone has d faces. Then, we put the each region generated
by the simplex-cones to a group represented by a simplex-cone.
For example, if we partition the cone csi that contains point sj to two cones, then the
region Ri,j is partitioned to two region R1

i,j and R2
i,j (see Fig. 4).

pi pj
Ri,j

(a)

R1

i,j

R2

i,j

pi

pi

pj

pj

(b)

Figure 4: Illustration of Ri,j, R
1
i,j and R2

j,i in R3.

Simply, it is observed that (see Fig. 5)

Ri,j ∩Rj,i = (R1
i,j ∩R1

j,i) ∪ (R1
i,j ∩R2

j,i) ∪ (R2
i,j ∩R1

j,i) ∪ (R2
i,j ∩R2

j,i)

170 B. Iranfar / JAC 52 issue 1, June 2020, PP. 163– - 174

si sj

Ri,j ∩Rj,i

(a)

si sj

R
1

i,j ∩R
1

j,i

(b)

si sj

R
1

i,j ∩R
2

j,i

(c)

si sj

R
2

i,j ∩R
1

j,i

(d)

si sj

R
2

i,j ∩R
2

j,i

(e)

Figure 5: Illustration of Ri,j and Ri,j ∩Rj,i in the plane.

and thus

∏
sm∈Ri,j∩Rj,i

πm =

 ∏
sm∈R1

i,j∩R1
j,i

πm

×
 ∏
sm∈R1

i,j∩R2
j,i

πm

×
×

 ∏
sm∈R2

i,j∩R1
j,i

πm

×
 ∏
sm∈R2

i,j∩R2
j,i

πm

 .
Generally, a d-dimensional hypercube can be triangulation into d! d-simplices with disjoint
interiors [12].
Let V = {v0, v1, . . . , vβ}, 0 ≤ β ≤ d, be a set of β + 1 points in Rd. If the vectors vi− v0,
1 ≤ i ≤ β, are linearly independent, then the convex hull of V is called a β-simplex.
Consider the collection Cκ = {c1, c2, . . . , ck} of cones in Section 2. Each cone ci in Cκ
generated by Vi, where Vi is the vertex set of a (d − 1)-dimensional hypercube that is
contained in one of the 2d hypercube x1 = 1, x1 = −1, x2 = 1, x2 = −1, . . . , xd = 1,
xd = −1. This hypercube can be triangulated into (d − 1)! many (d − 1)-simplices

∆1
i ,∆

2
i , . . . ,∆

(d−1)!
i , that are all contained in the same hyperplane as Vi. We define

Cκs = {cji : for 1 ≤ i ≤ κ, 1 ≤ j ≤ (d− 1)!},

where κs = 2d!d
√

2(d− 1)/(1− cos θ)ed−1. Since κ = d(d+1)/2(π/θ)d−1, we have

κs ≤ κdd−1 = d(3d−1)/2(π/θ)d−1.

171 B. Iranfar / JAC 52 issue 1, June 2020, PP. 163– - 174

The collection Cκs consist κs simplicial cones that cover Rd, and that all have their apex
at the origin. If d is a constant, then Cκ can be constructed in O(1/θd−1) time and consists
of κ = O(1/θd−1) cones with disjoint interiors [14].
Since the collection Cκs has at most d(3d−1)/2(π/θ)d−1 cones, if we only consider the collec-
tion of the vector perpendicular to every face, then we have at most (d(3d−1)/2(π/θ)d−1)2

different group regions Rk
i,j ∩Rl

j,i, for all si, sj ∈ S, i < j and 1 ≤ k, l ≤ (d− 1)!.

Observation 3.1. Let si and sj be two points in S. We have

∏
sm∈Ri.j∩Rj,i

πm =

(d−1)!∏
k=1

(d−1)!∏
l=1

∏
sm∈Rk

i.j∩Rl
j,i

πm

 .
Similar to Section 2, we will convert

∏
sm∈Rk

i,j∩Rl
j,i
πm to a partial-sum query. First, all

regions Rk
i,j∩Rl

j,i, for all si, sj ∈ S , i < j and 1 ≤ k, l ≤ (d−1)!, are grouped base of lines
through the origin that are orthogonal to its face, we denote the i-th group of regions by
Gi and the number of groups by q. Next, for each region, let D1, D2, . . . , Df be the lines
through the origin that are orthogonal to the face of this region, where f is equal to 2d.
These lines define the coordinate system that can be used to compute

∏
sm∈Ri,j∩Rj,i

πm.

We define the function Source() such that

Source(Rk
i,j ∩Rl

j,i) = Ri,j ∩Rj,i,

for any 1 ≤ i < j ≤ n and 1 ≤ k, l ≤ (d− 1)!. We preprocess every group for computing
partial-sum query.

Lemma 3.2. Algorithm 1 computes Equation (5) in O(n2α(n2, n)2d) time and O(n2)
space.

Proof. Since we have at most (d(3d−1)/2(π/θ)d−1)2 different group regions Ri,j ∩ Rj,i, for
all si, sj ∈ S, i < j, grouping these regions takes

O(d(3d−1)/2(π/θ)d−1)2 log(d(3d−1)/2(π/θ)d−1)

time. Since d and θ are constants, grouping these regions takes O(1) time. Preprocessing
each group of the region takes

q∑
i=1

[O(n) +O(Qj)] = q ×O(n) +

q∑
i=1

O(Qj) = O(qn) +O((d− 1)!2n2) = O(n2)

time, where Qj is the number of regions that lie in the j-th group. Finally, computing
all partial-sum queries take O((d − 1)!2n2α(n2, n)2d) time. Therefore, Algorithm 1 takes
O(n2α(n2, n)2d) time. Space complexity of Algorithm 1 is similar to Algorithm 2.

From Lemma 2.2 and Lemma 3.2, the following theorem is obtained.

Theorem 3.3. Let S be a set of n uncertain points in Rd. The expected weight of the
θ-graph can be computed in O(n2α(n2, n)2

d
) time and O(n2) space.

172 B. Iranfar / JAC 52 issue 1, June 2020, PP. 163– - 174

Algorithm 3:

1 htb Input : Uncertain point set (S,Π)

Output:
∑

si,sj∈S, i<j

[
|sisj| × πi × πj ×

∏
sm∈Ri,j∩Rj,i

πm

]
2 for i = 1 to n− 1 do
3 for j = i+ 1 to n do
4 for k = 1 to (d− 1)! do
5 for l = 1 to (d− 1)! do
6 Group regions Rk

i,j ∩Rl
j,i base of lines through the origin that is

orthogonal to its faces;

7 E[Ri,j ∩Rj,i] = πi × πj × |sisj|;

8 for i = 1 to q do
9 for j = 1 to n do

10 Transform point sj to new coordinates base of lines through the origin that
is orthogonal to the face of Gi ;

11 preprocess Gi for partial-sum query ;
12 for every region γ ∈ Gi do
13 compute partial-sum query σ(A, γ);
14 E[Source(γ)] = E[Source(γ)]× σ(A, γ);

15 Sum = 0;
16 for i = 1 to n− 1 do
17 for j = i+ 1 to n do
18 Sum = Sum+ E(Ri,j ∩Rj,i)

19 return Sum;

173 B. Iranfar / JAC 52 issue 1, June 2020, PP. 163– - 174

4 Conclusion

In this paper, we studied the θ-graph of a set of n points in uncertain points in tuple model.
We proposed an algorithm to compute the expected weight of θ-graph in O(n2α(n2, n)2d)
time using O(n2) space, where θ and d are constants. There are some interesting problems
to be pursued. One of them is computing the expected weight of other spanners on
uncertain points, since the θ-graph is a t-spanner for a t which is a function of θ.

References

[1] Agarwal, P. K., Cheng, S.-W., and Yi, K. Range searching on uncertain data. ACM
Transactions on Algorithms (TALG) 8, 4 (2012), 43.

[2] Agarwal, P. K., Har-Peled, S., Suri, S., Yıldız, H., and Zhang, W. Convex hulls under
uncertainty. In European Symposium on Algorithms (2014), Springer, pp. 37–48.

[3] Agarwal, P. K., Kumar, N., Sintos, S., and Suri, S. Range-max queries on uncertain
data. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (2016), ACM, pp. 465–476.

[4] Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., and Frieder, O. Geometric spanners
for wireless ad hoc networks. IEEE Transactions on parallel and Distributed Systems
14, 4 (2003), 408–421.

[5] Chazelle, B., and Rosenberg, B. Computing partial sums in multidimensional arrays.
In Proceedings of the fifth annual symposium on Computational geometry (1989),
ACM, pp. 131–139.

[6] Clarkson, K. Approximation algorithms for shortest path motion planning. In Pro-
ceedings of the nineteenth annual ACM symposium on Theory of computing (1987),
pp. 56–65.

[7] Farshi, M., and Hosseini, S. H. Visualization of Geometric Spanner Algorithms,
http://cs.yazd.ac.ir/cgalg/AlgsVis/.

[8] Fischer, M., Lukovszki, T., and Ziegler, M. Geometric searching in walkthrough
animations with weak spanners in real time. In European Symposium on Algorithms
(1998), Springer, pp. 163–174.

[9] Goldreich, O., and Ron, D. Approximating average parameters of graphs. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques. Springer, 2006, pp. 363–374.

[10] Keil, J. M. Approximating the complete euclidean graph. In Scandinavian Workshop
on Algorithm Theory (1988), Springer, pp. 208–213.

http://cs.yazd.ac.ir/cgalg/AlgsVis/

174 B. Iranfar / JAC 52 issue 1, June 2020, PP. 163– - 174

[11] Keil, J. M., and Gutwin, C. A. Classes of graphs which approximate the complete
euclidean graph. Discrete & Computational Geometry 7, 1 (1992), 13–28.

[12] Kuhn, H. W. Some combinatorial lemmas in topology. IBM Journal of research and
development 4, 5 (1960), 518–524.

[13] Morin, P., and Verdonschot, S. On the average number of edges in theta graphs. In
2014 Proceedings of the Eleventh Workshop on Analytic Algorithmics and Combina-
torics (ANALCO) (2014), SIAM, pp. 121–132.

[14] Narasimhan, G., and Smid, M. Geometric spanner networks. Cambridge University
Press, 2007.

[15] Russel, D., and Guibas, L. Exploring protein folding trajectories using geometric
spanners. In Biocomputing 2005. World Scientific, 2005, pp. 40–51.

[16] Suri, S., Verbeek, K., and Yıldız, H. On the most likely convex hull of uncertain
points. In European Symposium on Algorithms (2013), Springer, pp. 791–802.

[17] Tarjan, R. E. Efficiency of a good but not linear set union algorithm. Journal of the
ACM (JACM) 22, 2 (1975), 215–225.

[18] Xue, J., Li, Y., and Janardan, R. On the expected diameter, width, and complexity
of a stochastic convex hull. Computational Geometry 82 (2019), 16–31.

[19] Yao, A. C.-C. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM Journal on Computing 11, 4 (1982), 721–736.

[20] Zhang, W. Geometric computing over uncertain data. PhD thesis, Duke University,
2015.

	Introduction
	Related work.

	The expected weight of the -graph
	Improve the running time of the algorithm
	Conclusion

