
تعداد نشریات | 162 |
تعداد شمارهها | 6,678 |
تعداد مقالات | 71,982 |
تعداد مشاهده مقاله | 128,818,796 |
تعداد دریافت فایل اصل مقاله | 101,611,569 |
On computing total double Roman domination number of trees in linear time | ||
Journal of Algorithms and Computation | ||
دوره 52، شماره 1، شهریور 2020، صفحه 131-137 اصل مقاله (236.1 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2020.76537 | ||
نویسنده | ||
Abolfazl Poureidi* | ||
Department of Mathematics, Shahrood University of Technology Shahrood, Iran | ||
چکیده | ||
Let $G=(V,E)$ be a graph. A double Roman dominating function (DRDF) on $G$ is a function $f:V\to\{0,1,2,3\}$ such that for every vertex $v\in V$ if $f(v)=0$, then either there is a vertex $u$ adjacent to $v$ with $f(u)=3$ or there are vertices $x$ and $y$ adjacent to $v$ with $f(x)=f(y)=2$ and if $f(v)=1$, then there is a vertex $u$ adjacent to $v$ with $f(u)\geq2$. A DRDF $f$ on $G$ is a total DRDF (TDRDF) if for any $v\in V$ with $f(v)>0$ there is a vertex $u$ adjacent to $v$ with $f(u)>0$. The weight of $f$ is the sum $f(V)=\sum_{v\in V}f (v)$. The minimum weight of a TDRDF on $G$ is the total double Roman domination number of $G$. In this paper, we give a linear algorithm to compute the total double Roman domination number of a given tree. | ||
کلیدواژهها | ||
Total double Roman dominating function؛ linear algorithm؛ Dynamic programming؛ Combinatorial optimization؛ Tree | ||
آمار تعداد مشاهده مقاله: 298 تعداد دریافت فایل اصل مقاله: 230 |