- Ahmad, F., Ahmad, I. & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, (163), 173-181.
- Alström, S. & Burns, R. G. (1989). Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Ssoils, (7), 2323-238.
- Ameen, A., Deravel, J., Krier, F., Béchet, M. & Ongena, M. (2017). Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environmental Science and Pollution Research, (10), 1007-1018.
- Amini, K. (2009). Physiological race of Fusarium oxysporum f. sp. lycopersici in Kurdistan Province of Iran and reaction of some tomato cultivars to race 1 of pathogen. Plant Pathology, (8), 68-73.
- Aragunde, N. C., Graziano, M. & Lamattia, L. (2004). Nitric oxide plays a central role in determining lateral root development in tomato. Planta, (218), 900-905.
- Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B. & Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, (8), 63-73.
- Baker, K. F. & Cook, R. J. (1974). Biological control of plant pathogens. American Phytopathology Society. St. Paul, Minn. 433pp.
- BioHPC cloud [computer software]. (2017). BioHPC lab software from https://biohpc.cornell.edu/lab/lab.aspx
- Borriss, R., Chen, X.H., Rueckert, C., Blom, J., Becker, A., Baumgarth, B., Fan, B.,Pukall, R., Schumann, P., Sproer, C., Junge, H., Vater, J., Puhler, A. & Klenk, H.P. (2011). Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7Tand FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. International Journal of Systemic and Evolutionary, (61), 1786-1801.
- Cai, X., Li, H., Xue, Y. & Liu, Ch. (2013). Study of endophytic Bacillus amyloliquefaciens CC09 and its antifungal cyclic lipopeptides. Journal of Applied Biology and Biothechnology, (1), 1-5.
- Cai, X., Kang, X., Xi, H., Liu, Ch. & Xue, Y. (2016). Complete genome sequence of the endophytic biocontrol strain Bacillus velezensis CC09. Genome Announcements, 4(5), 1016-1048.
- Cai, X., Liu, Ch., Wang, B. T. & Xue, R. Y. (2017). Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease. Microbiological Research, (196), 89-94
- Chen, X., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I.,Morgenstern, B., Voss, B., Hess, W., Reva, O., Junge, H., Voigt, B., Jungblut, P.,Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G. & Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, (25), 1007-1014.
- Chen, Y., Yan, F., Chai, Y., Clardy, J., Kolter, R., Guo, J. & Losick, R. (2012a). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes meditating biofilm formation. Environmental Microbiology, (15), 848- 864.
- Chen, Y., Yan, F., Chai, Y., Clardy, J., Losick, R. & Guo, J. (2012b). A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the root of tomato plant. Molecular Microbiology, (85), 418-430.
- Dunlap, C., Kim, S., Kwon, S. & Rooney, A. (2016). Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. International Journal of Systemic Evolutionary Microbiology, (66), 1212-1217.
- Fernandez Scavino, A. & Pedraza, R.O. (2013). The role of siderophores in plant growth-promoting bacteria. Bacteria in Agrobiology: Crop Productivity, 265-285.
- Fiddaman, P. J. & Rossall, S. (1993). The production of antifungal volatiles by Bacillus subtilis. Journal of Applied Bacteriology, (74), 395-405.
- Fira, D., Dimkić, I., Berić, T., Lozo, J. & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, (285), 44-55.
- Gutiérrez-Luna, F. M., López-Bucio, J., Altamirano-Hernández, J., Valencia-Cantero, E., Homero, R. C. & Macías-Rodríguez, L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis, 51, 75-83.
- Hagedorn, C., Gould, W. D. & Bardinelli, T. R. (1989). Rhizobacteria of cotton and their repression of seedling disease pathogens. Applied and Environmental Microbiology, (55), 2793-2797.
- Hampton, J. G. & Tekrony, D. M. (1995). Handbook of vigour test methods. International. Seed Testing Association, Zurich, Switzerland.
- Honda, N., Hirai, M., Ano, T. & Shoda, M. (1998). Antifungal effect of a heterotrophic nitrifier Alcaligenes faecalis. Biotechnology Letters, (20) 703-705.
- Kamal, A., Elyousr, A. & Mohamed, H. M. (2009). Biological control of Fusarium wilt in tomato by Plant Growth Promoting Yeast and Rhizobacteria. Plant Pathology Journal, 25(2), 199-204.
- Kang, X., Zhang, W., Cai, X., Zhu, T., Xue, Y. & Liu, Ch. (2018). Bacillus velezensis CC09: A Potential ‘Vaccine’ for controlling wheat diseases. Mulecular Plant- Microb Interaction, (31), 623-632.
- Liu, Z., Budiharjo, A., Wang, P., Shi, H., Fang, J., Borriss, R., Zhang, K. & Huang, X. (2013). The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Applied Microbiology and Biotechnology, (97), 10081-10090.
- Liu, G., Kong, Y., Fan, Y., Geng, D. P. & Sun, M. (2017). Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. Journal of Biotechnology, (249), 20-24.
- Lorraine, D., Cotter, C. & Paul, R. (2013). The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit gram negative bacteria. BMC Microbiology, 13(3), 212-220.
- Maurhofer, M., Keel, C., Haas, D. & Defago, G. (1995). Influnce of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production. Plant Pathology, (44), 40-50.
- Meng, Q., Jiang, H. & Hao, J. (2016). Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biological Control, (98), 18-26.
- Palazzini, H. J., Dunlap, Ch. A., Bowman, M. J. & Chulze, S. N. (2016). Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiological Research, (192), 30-36.
- Pan, H., Li, L., Q. & Hu, J. Ch. (2017). The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent. Journal of Biotechnology, (247), 25-28.
- Patten, C. L. & Glick, B. R. (2002). Role of Pseudomonas putida indole- acetic acid in development of the host plant root system. Applied and Environmental Microbiology, (68), 3795-3801.
- Pikovskaya, R. I. (1948). Mobilization of phosphorus and soil in connection with the vital activity of some microbial species. Mikrobiologii, (17), 362-70.
- Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceeding National Academy of Sciences U.S.A, (100), 4927-4932.
- Ryu, C. M., Allen, R., Melo, I. S. & Pare, P. W. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, (226), 839-851.
- Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S. & Tribedi, P. (2016). Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research, 23 (3), 245-253. (in Farsi)
- Schaad, N. W., Jones, J. B. & Chun, W. (2001). Laboratory Guide for identification of plant pathogenic bacteria.third edition.The American phytopathological society, Minnesota USA.
- Sharifi, R., Alizadeh, H., Ahmadzade, M. & Rasouli Sadaghiani, M. (2017). Investigation of different methods in siderophore measurement in indigenous fluorescent pseudomonads. Biological Journal of Microorganism, 6(21), 97-106.
- Sharifi, R. & Ryu, M. C. (2018a). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany, (20), 1-10.
- Sharifi, R. & Ryu, M. C. (2018b). Sniffing bacterial volatile compounds for healthier plants. Current Opinion in Plant Biology, (44), 88-97.
- Wang, L. T., Lee, F. L., Tai, Ch. J. & Yokota, A. (2007). Reclassification of Bacillus axarquiensis Ruiz-Garcı´a et al. 2005 and Bacillus malacitensis Ruiz-Garcı´a et al. 2005 as later heterotypic synonyms of Bacillus mojavensis Roberts et al. 1994. International Journal of Systematic and Evolutionary Microbiology, (57), 1663-1667.
- Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H. U., Bruccoleri, R., Lee, S. Y., Fischbach, M. A., Muller, R., Wohlleben, W., Breitling, R., Takano, E. & Medema,M. H. (2015). antiSMASH 3.0–a comprehensive resource for the genomemining of biosynthetic gene clusters. Nucleic Acids Research, (43), 237-243.
- Xu, T., Zhu, T. & Li, Sh. (2016). Β-1, 3-1, 4 glucanase gene from Bacillus velezensis ZY20 exerts antifungal effect on plant pathogenic fungi. World Journal of Microbiology and Biotechnology, 32(26), 1-9.
- Yang, H., Xue, Y., Yu, X. & Liu, C. (2014). Colonization of Bacillus amyloliquefaciens CC09 in wheat leaf and its biocontrol effect on powdery mildew disease. Microbiology China, 30, (4), 481-488.
- Yu, X., Ai, C., Xin, L. & Zhou, G. (2011). The siderophore producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, (47), 138-145
- Zhang, H., Kim, M. S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C. M., Allen, R., Melo, I. S. & Pare, P. W. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, (226), 839-851.
|