- Acciarri, N., Restaino, F., Vitelli, G., Perrone, D., Zottini, M., Pandolfini, T., Spena, A. & Rotino, G. (2002). Genetically modified parthenocarpic eggplants: improved fruit productivity under both greenhouse and open field cultivation. BMC Biotechnology, 2(4), 1-7.
- Biriukova, N. & Maslovskaya, E. (2004). The influence of cultivation conditions on parthenocarpy of cucumber. In: Proceedings of Cucurbitaceae, the 8th EUCARPIA, 12-17 July, Palacký University, Olomouc, Czech Republic, pp. 51-56.
- Boonkorkaew, P., Hikosaka, S. & Sugiyama, N. (2008). Effect of pollination on cell division, cell enlargement, and endogenous hormones in fruit development in a gynoecious cucumber. Scientia Horticulturae, 116 (1), 1-7.
- Byers, R. E., Baker, L. R., Sell, H. M., Herner, R. C. & Dilley D. R. (1972). Female flower induction on androecious cucumber (Cucumis sativus L.). Journal of the American Society of horticultural Science, 98, 197-199.
- Cantliffe, D. J. & Phatak, S. C. (1975). Parthenocarpic fruit development from grafted ovaries of Cucumis sativus L. Plant Physiology, 55(6), 1107-1109.
- Cantliffe, D. J. (1981). Alteration of sex expression due to change in temperature, light intensity, and photoperiod. Journal of the American Society for Horticultural Science, 106 (2), 133-136.
- De ponti, O. M. B. & Garretsen, F. (1976). Inheritance of parthenocarpy in pickling cucumbers (Cucumis sativus L.) and linkage with other characters. Euphytica, 25(1), 633-642.
- Dudley, J. W. & Moll, R. H. (1968). Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Science, 9(3), 257-262.
- Farshadfar, E. (2000). Application of Quantitative Genetics in Plant Breeding. Vol. 1. Tagh- E – Bostan Press, Kermanshah. (in Farsi)
- Fazio, G., Staub, J. E. & Stevens, M. R. (2003). Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theoretical Applied Genetics, 107(5), 864-874.
- Fukushima, E., Matsuo, E. & Fujieda, K. (1968). Studies on the growth behaviour of cucumber (Cucumis sativus L.), Journal of the Faculty of Agriculture, 14(3), 349-366.
- Galun, E. (1959). Effects of gibberellic acid and naphthalene acetic acid on sex expression and some morphological characters in the cucumber plant. Phyton, 13, 1-8.
- Galun, E., Izhar, S. & Atsmon, D. (1965). Determination of relative auxin content in hermaphrodite and andromonoecious Cucumis sativus L. Plant Physiology, 40(2), 321-326.
- Gustafson, F. G. (1939). The cause of natural parthenocarpy. American Journal of Botany, 26 (3), 135-138.
- Hawthorn, L. R. & Wellington, R. (1930) Geneva, a greenhouse cucumber that develops fruit without pollination. New York State Agricultural Experiment Station, 2, 3–11.
- Kikuchi, K., Honda, I., Matsuo, S., Fukuda, M. & Saito, T. (2008). Stability of fruit set of newly selected parthenocarpic eggplant lines. Scientia Horticulturae, 115, 111-116.
- Kim, I. S. Okubo, H. & Fujieda, K. (1992). Genetic and hormonal control of parthenocarpy in cucumber (Cucumis sativus L.). Journal Faculty of Agriculture, 36 (3.4), 173-181.
- Knapp, S. J. (1998). Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Science, 38(5), 1164-1174.
- Kvasnikov, B. V., Rogova, N. T., Tarakanova, S. I. & Ignatov, S. I. (1970). Methods of breeding vegetable crops under the covered ground. Bulletin of applied botany, genetics and plant breeding, 42, 45-57.
- Lietzow, C. D., Zhu, H., Pandey, S., Havey, M. J. & Weng, Y. (2016). QTL mapping of parthenocarpic fruit set in North America processing cucumber. Theoretical Applied Genetics, 129 (12), 2387-2401.
- Mibus, H. & Tatlioglu, T. (2004). Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theoretical Applied Genetics, 109(8), 1669-1676.
- Mitchell, W. D. & Wittwer, S. H. (1962). Chemical regulation of flower sex expression and vegetative growth in Cucumis sativus L. Science, 136(3519), 880-881.
- Moradipour, F., Olfati, J. A., Hamidoghli, Y., Sabouri, A. & Zahedi, B. (2016). General and specific combining ability and heterosis for yield in cucumber fresh market lines. International Journal of Vegetable Science, 23(1), 1-9.
- Nematzadeh, Gh. A. & Kiani, Gh. (2011). Plant breeding (Classical methods). Vol. 1. Rice and Citrus Institute. (in Farsi)
- Nitsch, J. P. (1970). Hormonal factors in growth and development. In. A.C. Hulme (ed.), The Biochemistry of Fruits and their Products. Vol. II, Academic Press, London, pp. 427-472.
- Olfati, J. A., Babalar, M., Kashi, A. K., Dadashipoor, A. & Shahmoradi, Kh. (2008). The effect of ammonium and molybdenum on nitrate concentration in two cultivars of greenhouse cucumbers. Journal of Horticultural science, 22(1), 67-77.
- Panti, K., Das Munshi, A. & Kanti Behera T. (2015). Inheritance of gynoecism in cucumber (Cucumis sativus L.) using genotype gbs-1 as gynoecious parent. Genetika, 47 (1), 349-356.
- Pike, L. M. & Peterson, C. E. (1968). Inheritance of Pathenocarpy in the Cucumber (Cucumis sativus L.). Euphytica, 18(1), 101-105.
- Rudich, J. Baker, L. R. & Sell, H. M. (1977). Parthenocarpy in Cucumis sativus L. as affected by genetic parthenocarpy, thermo-photoperiod, and femaleness. Journal of the American Society of Horticultural Science, 102(2), 225-228.
- Rudich, J., Halevy, A. H. & Kedar, N. (1972). The level of phytohormones in monoecious and gynoecious cucumbers as affected by photoperiod and ethephon. Plant Physiology, 50(5), 585-590.
- Serquen, F. C., Bacher, J. & Staub, J. E. (1997). Genetic analysis of yield components in cucumber at low plant density. Journal of American Society of Horticultural Science, 122(4), 522-528.
- Sharma, J. R. (2008). Statistical and biometrical techniques in plant breeding. New age international publisher. New dehli. 432 pp.
- Spena, A. & Leonardo Rotina, G. (2001). Parthenocarpy. In: Current Trends in the Embryology of Aniosperms. (pp. 435-450.) Kluwer Academic Publishers.
- Staub, J. E., Bacher, J. & Crubaugh L. (1995). Problems associated with the selection of determinate cucumber (Cucumis sativus L.) plant types in a multiple lateral background. Cucurbit Genetics Cooperative, 18, 7-9.
- Sun, Z., Staub, J. E., Chung, S. M. & Lower, R. L. (2006a). Identification and comparative analysis of quantitative trait loci associated with parthenocarpy in processing cucumber. Plant Breeding, 125 (3), 281-287.
- Sun, Z., Lower, R. L. & Staub, J. E. (2006b). Analysis of generation and components of variance for parthenocarpy in cucumber (Cucumis sativus L.). Plant breeding, 125(3), 281-287.
- Takeno, K. & Ise, H. (1992). Parthenocarpic fruit set and endogenous indole-3-acetic acid content in ovary f Cucumis sativus L., Journal of the Japanese Society for Horticultural Science, 60(4), 941-946.
- Varoquaux, F. Blanvillain, R. Delseny, M. & Gallois, P. (2000). Less is better: new approaches for seedless fruit production. Trends Biotechnology, 18 (6), 233-242.
- Wehner, T. C. (1989). Breeding for improved yield in cucumber. Vol. 6. Timber Press.
- Wu, Z., Zhang, T., Li, L., Xu, J., Qin, X., Zhang, T., Cui, L., Lou, Q., Li J. & Chen, J. F. (2016). Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing. BMC Plant Biology, 16(182), 1-14.
- Yan, L. Y., Lou, L. N., Feng, Z. H., Lou, Q. F. & Chen, J. F. (2010). Inheritance of parthenocarpy in monoecious cucumber (Cucumis sativus L.) under different eco-environments. Chinese Journal of Applied Ecology, 21(1), 61-66.
- Yan, L.Y., Lou, L. N., Lou, Q. F. & Chen, J. F. (2008). Inheritance of parthenocarpy in gynoecious cucumber. Acta Horticulturae Sinica, 35 (10), 1441-1446.
- Yoshida, T., Matsunaga, S. & Saito T. (2001). Effect of seasonal condition and genotype on fully developed parthenocarpy in eggplant. Journal of the Japanese Society for Horticultural Science, 70, 388. (in Japanese)
- Young, L. W., Wilen, R. W. & Bonham-Smith, P. C. (2004) High temperature stress of Brassica napus during flowering reduces micro- and mega-gametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany, 55(396), 485-495.
|