تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,869 |
تعداد دریافت فایل اصل مقاله | 97,231,068 |
بررسی کارایی مدلهای غیرپارامتریک در برآورد تبخیر- تعرق سالانه با بهکارگیری آزمون گاما در مناطق نیمهخشک ایران | ||
تحقیقات آب و خاک ایران | ||
مقاله 18، دوره 50، شماره 7، آذر 1398، صفحه 1801-1811 اصل مقاله (917.16 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2019.273085.668090 | ||
نویسندگان | ||
محمد نادریان فر* 1؛ حوریه مرادی2 | ||
1استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه جیرفت، جیرفت، ایران | ||
2دانشجوی دکتری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
چکیده | ||
محدودیت منابع آب و رقابت بخشهای مختلف در استفاده از این منابع، نیاز به بهرهبرداری بهینه از منابع آب را مخصوصاً در مناطق خشک و نیمهخشک افزایش داده است. برای این منظور از آمار و اطلاعات در محدوده شش ایستگاه همدیدی مناطق نیمهخشک ایران شامل مشهد، شیراز، تبریز، کرمانشاه، خرمآباد و ارومیه استفاده شد. متغیرهای ورودی شامل فراسنجهای دمای متوسط (T)، رطوبت نسبی (RH)، ساعت آفتابی (S) و سرعت باد در ارتفاع دو متری (U2) میباشند. برای تعیین طول دوره آزمون ابتدا از روش M تست استفاده شد و با توجه به اینکه در انتهای سمت راست نمودارها، هم آماره گاما و هم خطای استاندارد به سمت مجانب شدن میروند، از 5 سال آخر برای تست مدلها استفاده شد. نتایج نشان داد که بر اساس آزمون گاما در حالت ترکیبی بهترین ورودیها برای ایستگاههای مشهد، شیراز، تبریز، کرمانشاه، خرمآباد و ارومیه به ترتیب (S، U2، RH)، (T، U2، RH، S)، (T، U2، RH، S)، (T، U2، RH)، (T، RH، S)، (RH، S)، دارای کمترین گاما به ترتیب برابر 005/0، 01/0-، 001/0، 002/0-، 008/0، 009/0 میباشند. برای مدلسازی تبخیر- تعرق سالانه از روشهای رگرسیون خطی (LLR)، رگرسیون خطی پویا (DLLR)، شبکه عصبی مصنوعیANNCG وANNBFGS استفاده شد. برای ارزیابی مدلهای فوق از معیارهای ارزیابی R، MAE، RMSE، MBE، معیار جاکوویدز (t) و معیار صباغ (R2/t) استفاده شد. نتایج نشان داد که با بهترین ورودیها بهترین عملکرد برای ایستگاههای مشهد، کرمانشاه، تبریز و شیراز به دست آمد، به طوری که ضریب همبستگی پیرسون در دوره تست برای مدل شبکه عصبی (CG) به ترتیب 91/0، 98/0، 96/0، 97/0 به دست آمد. نتایج به طور کلی نشان داد که روشهای غیرخطی به خوبی توانایی برآورد تبخیر- تعرق سالانه را در ایستگاههای مورد بررسی دارند. | ||
کلیدواژهها | ||
تبخیر- تعرق؛ روش فائو- پنمن- مانتیث (FAO-PM)؛ آزمون گاما؛ اقلیم نیمه خشک | ||
مراجع | ||
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration- Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109. Ansari, H. (2013). Daily Pan Evaporation Mode lling With ANFIS and NNARX. Iran Agricultural Research, 31. Corcoran, J. J., Wilson, I. D., & Ware, J. A. (2003). Predicting the geo-temporal variations of crime and disorder. International Journal of Forecasting, 19(4), 623-634. Doğan, E. (2009). Reference evapotranspiration estimation using adaptive neuro‐fuzzy inference systems. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage, 58(5), 617-628. Durrant, P. J. (2001). winGamma: A non-linear data analysis and modelling tool with applications to flood prediction. Unpublished Ph.D. thesis, Department of Computer Science, Cardiff University, Wales, UK Entesari, M.R., Norouzi, M., Salamat, A.S., Ehsani, M.R., Tavakoli, A.S. (2007). Comparison Penman - Montith with other recommended methods for calculating potential evapotranspiration (ET0) in several different regions of Iran. eighth roceedings seminar on National Committee of Irrigation and Drainage, Paper No. 11, pages 237-221. (In Persian) Ghabayiee sough, M., Mosaedi, A., Hussam, M., Hezarjarib, l. (2010). Evaluation of pre processing the input parameters to ANN - Artificial (ANNs) using regression step by step and the Gamma test to estimate a more rapid daily evapotranspiration. Journal of Water and Soil, 24 (3), 610-624. (In Persian). Jacovides, C. P. (1997). Reply to comment on Statistical procedures for the evaluation of evapotranspiration models. Agricultural water management, 3, 95-97. Jia Bing, C. (2004). Prediction of daily reference evapotranspiration using adaptive neurofuzzy inference system. Trans of the Chinese society of Agricultural Engineering, 20(4).13-16. Jones, A. J., Tsui, A., & De Oliveira, A. G. (2002). Neural models of arbitrary chaotic systems: construction and the role of time delayed feedback in control and synchronization. complexity international, 9(2002). Kişi, Ö., & Öztürk, Ö. (2007). Adaptive neurofuzzy computing technique for evapotranspiration estimation. Journal of Irrigation and Drainage Engineering, 133(4), 368-379. Kisi, O. (2010). Fuzzy genetic approach for modeling reference evapotranspiration. Journal of irrigation and drainage engineering, 136(3), 175-183. Koncar, N. (1997). Optimisation strategies for direct inverse neurocontrol (Doctoral dissertation, Imperial College London (University of London)). Li, Y., Horton, R., Ren, T., & Chen, C. (2010). Prediction of annual reference evapotranspiration using climatic data. Agricultural Water Management, 97(2), 300-308. Mousavi baygi, M., Erfanian, M., Sarmad, M. 2009. Using at least meteorological data for estimating reference evapotranspiration and provide breeding coefficients (Case Study: Khorasan Razavi province). Journal of soil water (Agricultural Science and Technology), 23(1), 91-99. (In Persian). Moghaddamnia, A., Gousheh, M. G., Piri, J., Amin, S., & Han, D. (2009b). Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources, 32(1), 88-97. Moghaddamnia, A., Remesan, R., Kashani, M. H., Mohammadi, M., Han, D., & Piri, J. (2009a). Comparison of LLR, MLP, Elman, NNARX and ANFIS Models—with a case study in solar radiation estimation. Journal of Atmospheric and Solar-Terrestrial Physics, 71(8-9), 975-982. Odhiambo, L. O., Yoder, R. E., & Yoder, D. C. (2001). Estimation of reference crop evapotranspiration using fuzzy state models. Transactions of the ASAE, 44(3), 543. Odhiambo, L. O., Yoder, R. E., Yoder, D. C., & Hines, J. W. (2001). Optimization of fuzzy evapotranspiration model through neural training with input–output examples. Transactions of the ASAE, 44(6), 1625. Sabzi parvar, A.A., Taffazoli, F., Zare abiane, H., Banezhad, H., Mosavi bayegi, M., Ghafori, M., Mohseni movahed, A., Mrianji, Z. (2008). Comparison of several models to estimate reference evapotranspiration in a cold and semi arid climates in order to optimize usage of radiation models,The Journal of soil and water (Agricultural Industry and Sciences), 22(2), Sumner, D. M., & Jacobs, J. M. (2005). Utility of Penman–Monteith, Priestley–Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. Journal of Hydrology, 308(1-4), 81-104. Shayan neazhad, M., Sadaty nezhad, S. H., Fahmi, H. (2007). Estimation potentialevapot ranspiration with fuzzy regression. Water resource journal, 3(3), 9-19. (In Persian). Tsui, A.P.M. (1999). Smooth data modelling and stimulus-response via stabilization of neural chaos (Doctoral dissertation, University of London). | ||
آمار تعداد مشاهده مقاله: 390 تعداد دریافت فایل اصل مقاله: 334 |