تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,602 |
تعداد دریافت فایل اصل مقاله | 97,206,238 |
استفاده از ماتریس هم-رخدادی سطح خاکستری برای طبقه بندی کشمش تودهای | ||
مهندسی بیوسیستم ایران | ||
مقاله 17، دوره 50، شماره 4، بهمن 1398، صفحه 951-961 اصل مقاله (1.22 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2019.274848.665153 | ||
نویسندگان | ||
مصطفی خجسته نژند* 1؛ حامد رمضانی2 | ||
1استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بناب، بناب، ایران | ||
2گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران | ||
چکیده | ||
کشمش یکی از محصولات مهم کشاورزی است. در این تحقیق با استفاده از روش بینایی اقدام به کیفیت سنجی محصول تودهای کشمش در دو حالت متفاوت شده است. در حالت اول، 6 طبقه ترکیبی از کشمش خوب و بد و در حالت دوم 15 طبقه ترکیبی از کشمش خوب، بد و چوب و خار و خاشاک مورد بررسی قرار گرفته است. نتایج طبقهبندی با روشهای LDA و SVM نشان دادند که بهترین دقت طبقهبندی 6 طبقه، با روش SVM خطی حاصل شد که دارای دقت 55/85 درصد بوده است. نتایج حاصل برای طبقهبندی 15 طبقه شامل کشمش خوب، بد و خار و خاشاک نشان داد که بهترین نتیجه باز با روش SVM خطی ولی با دقتی پایینتر در حدود 55/63 درصد حاصل گردید. نتایج نشان داد که روش GLCM بصورت قابل قبولی قادر به تشخیص طبقه محصول تودهای کشمش بوده و میتواند جایگزین فرد خبره در کارخانههای فرآوری کشمش شود. | ||
کلیدواژهها | ||
کشمش؛ ماشین بردار پشتیبان؛ طبقه بندی؛ تحلیل تفکیک خطی؛ ماشین بینایی | ||
مراجع | ||
Abbasgholipour, M., Omid, M., Keyhani, A. & Mohtasebi, S. S. (2011). Color image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditions. Expert Systems with Applications, 38(4), 3671-3678. Agricultural Statistics. (2017). Ministry of Agriculture, Deputy Director of Economic and Planning, ICT Center. Retrieved December 20, 2018, from https://usda.library.cornell.edu. Bai, X., Cao, Z., Wang, Y., Yu, Z., Zhang, X. & Li, C. (2013). Crop segmentation from images by morphology modeling in the CIE L* a* b* color space. Computers and Electronics in Agriculture, 99, 21–34. Cabras, P., Angioni, A., Garau, V. L., Minelli, E. V., Cabitza, F. & Cubeddu M. (1997). Residues of some pesticides in fresh and dried apricots. Journal of Agricultural and Food Chemistry, 45, 3221-3222 Chowdhury, S., Verma, B. & Stockwell, D. (2015). A novel texture feature based multiple classifier technique for roadside vegetation classification. Expert Systems with Applications, 42 (12), 5047–5055. Ebrahimi, E., Mollazade, K. & Babaei, S. (2014). Toward an automatic wheat purity measuring device: A machine vision-based neural networks-assisted imperialist competitive algorithm approach. Measurement, 55, 196-205. Esmaiilia, M., Sotudeh-Gharebaghb, R., Croninc, K., Mousavia, M.A.E. & Rezazadehd, G. (2007). Grape Drying: A Review. Food Reviews International, 23 (3), 257–280. Gardé-Cerdán, T., Arias-Gil, M., Marsellés-Fontanet, A.R., Ancín-Azpilicueta, C. & Martín-Belloso, O. (2007). Effects of thermal and non-thermal processing treatments on fatty acids and free amino acids of grape juice. Food Control, 18, 473–479. Ghrairi F., Lahouar L., Amira A., Brahmi F., Ferchichi A., Achour L. & Said S. (2013). Physicochemical composition of different varieties of raisins (Vitis vinifera L.) from Tunisia. Industrial Crops and Products, 43, 73-77. Guanjun, B., Mimi, J., Yi, X., Shibo, C., & Qinghua, Y. (2019). Cracked egg recognition based on machine vision. Computers and Electronics in Agriculture, 158, 159-166. Guevara-Hernandez, F. & Gomez-Gil, J. (2011). A machine vision system for classification of wheat and barley grain kernels. Spanish Journal of Agricultural Research, 9 (3), 672–680. Gurak, P.D., Cabral, L.M.C., Rocha-Leão, M.H.M., Matta, V.M. & Freitas, S.P. (2010). Quality evaluation of grape juice concentrated by reverse osmosis. Journal of Food Engineering, 96, 421–426. Haralick, R. M., Shanmugam, K. & Dinstein, I. H. (1973). Textural features for image classification. Systems, Man and Cybernetics. IEEE Transactions on, 6, 610–621. Jairaj, K.S., Singh, S.P. & Srikant, K.A. (2009). Review of solar dryers developed for grape drying. Solar Energy, 83, 1698–1712. Jiang, G., Wang, X., Wang, Z. & Liu, H. (2016). Wheat rows detection at the early growth stage based on Hough transform and vanishing point. Computers and Electronics in Agriculture, 123, 211–223. Karimi, N., Kondrood, R. R. & Alizadeh, T. (2017). An intelligent system for quality measurement of Golden Bleached raisins using two comparative machine learning algorithms. Measurement, 107, 68-76. Liming, X. & Yanchao, Z. (2010). Automated strawberry grading system based on image processing. Computers and Electronics in Agriculture, 71, S32–S39. Mokhtar, U., El Bendary, N., Hassenian, A.E., Emary, E., Mahmoud, M.A., Hefny, H. & Tolba, M.F. (2015). SVM-based detection of tomato leaves diseases. In: Intelligent Systems' 2014. Springer, Cham, pp. 641–652. Okamura, N. K., Delwiche, M. J. & Thompson, J. F. (1993). Raisin grading by machine vision. Transactions of the ASAE (USA). Olgun, M., Onarcan, A.O., Özkan, K., Işik, Ş., Sezer, O., Özgişi, K. & Koyuncu, O. (2016). Wheat grain classification by using dense SIFT features with SVM classifier. Computers and Electronics in Agriculture, 122, 185–190. Pangavhane, D.R. & Sawhney, R.L. (2002). Review of research and development work on solar dryers for grape drying. Energy Conversion and Management, 43, 45–61. Pham, V.H. & Lee, B.R. (2015). An image segmentation approach for fruit defect detection using k-means clustering and graph-based algorithm. Vietnam Journal of Computer Science, 2 (1), 25–33. Rehman, T. U., Zaman, Q. U., Chang, Y. K., Schumann, A. W., & Corscadden, K. W. (2019). Development and field evaluation of a machine vision based in-season weed detection system for wild blueberry. Computers and Electronics in Agriculture, 162, 1-13. Renzetti, F. R. & Zortea, L. (2011). Use of a gray level co-occurrence matrix to characterize duplex stainless steel phases microstructure. Frattura ed Integrità Strutturale, 16(1), 43-51. Su, Q., Kondo, N., Li, M., Sun, H., Al Riza, D. F., & Habaragamuwa, H. (2018). Potato quality grading based on machine vision and 3D shape analysis. Computers and electronics in agriculture, 152, 261-268. Sun, Y., Gu, X., Sun, K., Hu, H., Xu, M., Wang, Z. & Pan, L. (2017). Hyperspectral reflectance imaging combined with chemometrics and successive projections algorithm for chilling injury classification in peaches. LWT- Food Science and Technology, 75, 557–564. Unay, D., Gosselin, B., Kleynen, O., Leemans, V., Destain, M. & Debeir, O. (2011). Automatic grading of bi-colored apples by multispectral machine vision. Computers and Electronics in Agriculture, 75 (1), 204–212 Veernagouda Ganganagowder, N. & Kamath, P. (2017). Intelligent classification models for food products basis on morphological, colour and texture features. Acta Agronómica, 66 (4). Wang, A., Zhang, W., & Wei, X. (2019). A review on weed detection using ground-based machine vision and image processing techniques. Computers and Electronics in Agriculture, 158, 226-240. Yimyam, P. & Clark, A.F. (2016). 3D reconstruction and feature extraction for agricultural produce grading. In: Paper Presented at the Knowledge and Smart Technology (KST), 2016 8th International Conference on, pp. 136–141. Yu, X., Liu, K., Wu, D., & He, Y. (2012). Raisin quality classification using least squares support vector machine (LSSVM) based on combined color and texture features. Food and Bioprocess Technology, 5(5), 1552-1563. | ||
آمار تعداد مشاهده مقاله: 991 تعداد دریافت فایل اصل مقاله: 556 |