تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,721 |
تعداد دریافت فایل اصل مقاله | 97,217,442 |
آشکارسازی گرد و غبار در حوضۀ آبریز جازموریان با استفاده از تکنیک های چندطیفی در تصاویر سنجندۀ مادیس | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 10، دوره 50، شماره 3، مهر 1397، صفحه 545-562 اصل مقاله (1.58 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2018.248345.1007159 | ||
نویسندگان | ||
فرزانه قادری نسب1؛ محمدباقر رهنما* 2 | ||
1دانشجوی دکتری سازه های آبی دانشگاه شهید باهنر کرمان | ||
2دانشیار بخش مهندسی آب دانشگاه شهید باهنر کرمان | ||
چکیده | ||
یکی از چالشهای مهمی که اخیراً گریبانگیر مردم استانهای کرمان و سیستان و بلوچستان شده ظهور گرد و غبار است. خشکشدن تالاب فصلی جازموریان کانون تولید گرد و غبار در جنوبشرق کشور معرفی شده است. در این مطالعه قابلیت آشکارسازی گرد و غبار توسط شاخصهای ارائهشده در مدلهای جهانی بر روی تصاویر سنجندة مادیس در دو ماهوارة ترا و آکوا طی سالهای 2003 تا 2017 پایش شد. بدین منظور، حد آستانة ارائهشده توسط محققان در شاخصهای مورد مطالعه بومیسازی شد. برای بررسی صحت عملکرد روشهای مورد مطالعه، الگوریتمهای مورد استفاده بر روی تصاویر 04/01/2017 تا 07/01//2017 سنجندة مادیس اجرا شد. برای ارزیابی کارایی روشها از دید افقی اندازهگیریشده در ایستگاه سینوپتیک و محصول عمق نوری سنجندة مادیس استفاده شد. نتایج نشان داد الگوریتمهای مورد مطالعه عملکرد مناسبی در شناسایی پیکسلهای آلوده به گرد و غبار دارند. همچنین، برای تحلیل مسیر انتقال گرد و غبار از مدل Hysplit استفاده شد. در نتیجة اجرای مدل Hysplit در سه کانون آشکارشده با الگوریتمهای مورد بررسی، مشخص شد ذرات گرد و غبار سواحل دریای عمان (کوهای مکران)، دریای عمان، و حاشیة خلیج فارس را تحت تأثیر قرار میدهند که با نتایج محققان پیشین همخوانی دارد. | ||
کلیدواژهها | ||
آشکارسازی گرد و غبار؛ تالاب جازموریان؛ گرد و غبار؛ روش TIIDI؛ AOD | ||
مراجع | ||
ادارة کل حفاظت محیط زیست استان سیستان و بلوچستان (1393). تهیة نقشة پایة منابع اکولوژیک تالاب جازموریان و معرفی آن به عنوان یکی از مناطق تحت حفاظت سازمان حفاظت محیط زیست با استفاده از RS و GIS. شمشیری، س.؛ جعفری، ر.؛ سلطانی، س. و رمضانی، ن. (1393). آشکارسازی و پهنهبندی ریزگردهای استان کرمانشاه با استفاده از تصاویر ماهوارهای MODIS، بومشناسی کاربردی، 3(8). عطایی، ش.؛ محمدزاده، ع. و آبکار، ع.ا. (1394 الف). شناسایی گرد و غبار با استفاده از روش درخت تصمیمگیری از تصاویر سنجندة مادیس، مجلة علمی- پژوهشی علوم و فنون نقشهبرداری، 4(4): 151-160. عطایی، ش.؛ آبکار، ع.ا. و محمدزاده، ع. (1394 ب). شناسایی گرد و غبار با استفاده از شاخص TIIDI بهبودیافته و بهکارگیری دادههای سنجندۀ مادیس، محیطشناسی، 41(3): 563ـ572. مصباحی، ح. (1392). مدلسازی منابع آب با استفاده از نرمافزار MODSIM با هدف نگرش یکپارچه به چالشها و راهکارهای حوضة آبریز هامون جازموریان، پنجمین کنفرانس مدیریت منابع آب. Ackerman, S.A. (1989). Using the radiative temperature difference at 3.7 and 11 μm to tract dust outbreaks, Remote Sensing of Environment, 27(2): 129-133. Ackerman, S.A. (1997). Remote sensing aerosols using satellite infrared observations, Journal of Geophysical Research: Atmospheres, 102(D14): 17069-17079. Ataei, Sh.; Abkar, A.A. and Mohammadzadeh, A. (2015a). Dust detection using improved TIIDI and applying MODIS sensor data, Journal of Environmental Studies, 41(3): 572-563. Ataei, Sh.; Mohammadzadeh, A. and Abkar, A.A. (2015b). Using Decision Tree Method for Dust Detection from MODIS Satellite Image, JGST 2015, 4(4): 151-160. Csavina, J.; Field, J.; Félix, O.; Corral-Avitia, A.Y.; Sáez, A.E. and Betterton, E.A. (2014). Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates, Science of The Total Environment, 487: 82-90. Draxler, R.R. and Hess, G.D. (1998). An overview of the HYSPLIT_4 modelling system for trajectories, Australian meteorological magazine, 47(4): 295-308. Environmental Protection Agency of Sistan and Baluchestan provinc (2014). Preparation of the ecosystem resources map of Jazmourian wetland and its introduction as one of the protected areas of the Environmental Protection Agency using RS and GIS. Fu, Q.; Thorsen, T.J.; Su, J.; Ge, J.M. and Huang, J.P. (2009). Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations, Journal of Quantitative Spectroscopy and Radiative Transfer, 110(14): 1640-1653. Guo, J.; Xia, F.; Zhang, Y.; Liu, H.; Li, J.; Lou, M. ... and Zhai, P. (2017). Impact of diurnal variability and meteorological factors on the PM 2.5-AOD relationship: Implications for PM 2.5 remote sensing, Environmental Pollution, 221: 94-104. Huang, J.; Fu, Q.; Su, J.; Tang, Q.; Minnis, P.; Hu, Y. ... and Zhao, Q. (2009). Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints, Atmospheric Chemistry and Physics, 9(12): 4011-4021. Huang, J.; Wang, T.; Wang, W.; Li, Z. and Yan, H. (2014). Climate effects of dust aerosols over East Asian arid and semiarid regions, Journal of Geophysical Research: Atmospheres, 119(19). Kaufman, Y.J. and Tanré, D. (1998). Algorithm for remote sensing of tropospheric aerosol from MODIS. NASA MODIS Algorithm Theoretical Basis Document, Goddard Space Flight Center, 85: 3-68. Kaufman, Y.J.; Tanré, D.; Gordon, H.R.; Nakajima, T.; Lenoble, J.; Frouin, R. ... and Teillet, P.M. (1997). Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, Journal of Geophysical Research: Atmospheres, 102(D14): 16815-16830. Li, X.; Ge, L.; Dong, Y. and Chang, H.C. (2010). Estimating the greatest dust storm in eastern Australia with MODIS satellite images. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International (pp. 1039-1042). IEEE. Liu, Y. and Liu, R. (2011). A thermal index from MODIS data for dust detection. In Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International (pp. 3783-3786). IEEE. Mesbahi, H. (2013). A unified approach Water Resources Modeling to Challenges and Solutions in the Watershed Basin Hamoun Jazmourian Using MODSIM with the Purpose of Unified Approach, The Fifth Conference on Water Resources Management, Tehran. Miller, S.D. (2003). A consolidated technique for enhancing desert dust storms with MODIS, Geophysical Research Letters, 30(20). Moulin, C.; Lambert, C.E.; Dayan, U.; Masson, V.; Ramonet, M.; Bousquet, P. ... and Bergametti, G. (1998). Satellite climatology of African dust transport in the Mediterranean atmosphere, Journal of Geophysical Research: Atmospheres, 103(D11): 13137-13144. Pineda-Martinez, L.F.; Carbajal, N.; Campos-Ramos, A.A.; Noyola-Medrano, C. and Aragón-Piña, A. (2011). Numerical research of extreme wind-induced dust transport in a semi-arid human-impacted region of Mexico, Atmospheric ejenvironment, 45(27): 4652-4660. Qu, J.J.; Hao, X.; Kafatos, M. and Wang, L. (2006). Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements, IEEE Geoscience and Remote Sensing Letters, 3(4): 484-486. Rashki, A.; Arjmand, M. and Kaskaoutis, D.G. (2017). Assessment of dust activity and dust-plume pathways over Jazmurian Basin, southeast Iran, Aeolian Research, 24: 145-160. Reidmiller, D.R.; Hobbs, P.V. and Kahn, R. (2006). Aerosol optical properties and particle size distributions on the east coast of the United States derived from airborne in situ and remote sensing measurements, Journal of the atmospheric sciences, 63(3): 785-814. Riehl, H. (1961). Jet streams of the atmosphere, US Government Printing Office. Rolph, G.; Stein, A. and Stunder, B. (2017). Real-time environmental applications and display system: Ready, Environmental Modelling & Software, 95: 210-228. Shamshiri, S.; Jafari, R.; Soltani, S. and Ramazani, N. (2014). Dust detection and mapping in Kermanshah province using satellite imagery of Modis, Iranian Journal of Applied Ecology, 3(8). Shao, Y. and Dong, C.H. (2006). A review on East Asian dust storm climate, modelling and monitoring, Global and Planetary Change, 52(1): 1-22. Stunder, B.J. (1997). NCEP model output-FNL archive data: TD-6141. Prepared for National Climatic Data Center (NCDC). Technical report, NOAA Air Resources Laboratory, Silver Spring, MD.This document and archive grid domain maps are also available at http://www. arl. noaa. gov/ss/transport/archives. html. Tian, J. and Chen, D. (2010). Spectral, spatial, and temporal sensitivity of correlating MODIS aerosol optical depth with ground-based fine particulate matter (PM2. 5) across southern Ontario, Canadian Journal of Remote Sensing, 36(2): 119-128. Wang, J. and Christopher, S.A. (2003). Intercomparison between satellite‐derived aerosol optical thickness and PM2. 5 mass: implications for air quality studies, Geophysical research letters, 30(21). Li, X., Ge, L., Dong, Y., & Chang, H. C. (2010, July). Estimating the greatest dust storm in eastern Australia with MODIS satellite images. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International (pp. 1039-1042). IEEE. Xie, Y. (2009). Detection of smoke and dust aerosols using multi-sensor satellite remote sensing measurements, George Mason University. Zhang, L.; Cao, X.; Bao, J.; Zhou, B.; Huang, J.; Shi, J. and Bi, J. (2010). A case study of dust aerosol radiative properties over Lanzhou, China. Atmospheric Chemistry and Physics, 10(9): 4283-4293. Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J., Zaveri, R., & Huang, J. (2013). Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmospheric Chemistry & Physics Discussions, 13(7). Zhao, T.X.P.; Ackerman, S. and Guo, W. (2010). Dust and smoke detection for multi-channel imagers, Remote Sensing, 2(10): 2347-2368. | ||
آمار تعداد مشاهده مقاله: 654 تعداد دریافت فایل اصل مقاله: 502 |