تعداد نشریات | 161 |
تعداد شمارهها | 6,476 |
تعداد مقالات | 70,001 |
تعداد مشاهده مقاله | 122,881,111 |
تعداد دریافت فایل اصل مقاله | 96,081,371 |
Uptake of Some Elements with Aquatic Plants Exposed to the Effluent of Wastewater Treatment Plant | ||
Pollution | ||
مقاله 13، دوره 5، شماره 2، تیر 2019، صفحه 377-386 اصل مقاله (680.12 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2019.269722.542 | ||
نویسندگان | ||
S. Tatar1؛ E. Obek2؛ E. I. Arslan Topal3؛ M. Topal* 1 | ||
1Department of Environmental Engineering, Faculty of Engineering, University of Munzur, P.O. Box 62000, Tunceli, Turkey | ||
2Department of Bioengineering, Faculty of Engineering, University of Firat, P.O. Box 23000, Elazig, Turkey | ||
3Department of Environmental Engineering, Faculty of Engineering, University of Firat, P.O. Box 23000, Elazig, Turkey | ||
چکیده | ||
In this study, in the removal of macro (P, S, Na, K, Ca, Mg) and micro (Sb, Ba, Co, Cu, Fe, Pb, Mn, Hg, Mo, Se, Ag, Zn) elements in the effluent of Elazig Wastewater Treatment Plant, the efficiency of Lemna minor L. and Lemna gibba L. has been studied comparatively. For this aim, fronds of these plants have been adapted to the effluent of the treatment plant that feeds pilot scale reactors. The concentrations of elements in fronds harvested during the working period were analyzed by ICP/MS. The analytical results show that Lemna minor L. has a high accumulation potential for P, Sb, Ba, Co, Fe, Pb, Mn, Hg, Ag and Zn while Lemna gibba L. has a high accumulation potential for S, Na, Ca, Mg, Cu, Mo and Se. The results show that Lemna minor L. and Lemna gibba L. can be used as phytoremediators of wastewater. | ||
کلیدواژهها | ||
Accumulation؛ Lemna gibba L؛ Lemna minor L؛ Phytoremediation؛ Wastewater | ||
مراجع | ||
Aksoy, A., Demirezen, D. and Duman, F. (2005). Bioaccumulation, detection and analyses of heavy metal pollution in Sultan marsh and its environment. Water Air Soil Poll. 164(1-4); 241-255.
Anderson, C.W.N., Brooks, R.R., Chiarucci, A., LaCoste, C.J., Leblanc, M., Robinson, B.H., Simcock, R. and Stewart, R.B. (1999). Phytomining for nickel, thallium and gold. J Geochem. Explor., 67(1-3), 407-415.
APHA (1995). Standard Methods for the Examination of Water and Wastewater. 19th Edition, American Public Health Association, Inc., Newyork.
Azarpira, H., Behdarvand, P., Dhumal, K. and Pondhe, G. (2014). Wastewater remediation by using Azolla and Lemna for selective removal of mineral nutrients. Int. J. Bio., 4(3); 66-73.
Bragato, C., Schiavon, M., Polese, R., Ertani, A., Pittarello, M. and Malagoli, M. (2009). Seasonal variations of Cu Zn, Ni and Cr concentration in Phragmites australis (Cav.) Trin ex Steudel in a constructed wetland of North Italy. Desalination., 246(1-3); 35–44.
Chaudhuri, D., Majumder, A., Misra, A.K. and Bandyopadhyay, K. (2014). Cadmium Removal by Lemna minor and Spirodela polyrhiza, Int. J. Phytoremediation., 16(7-12); 1119–1132.
Chen, Y., Wang, C. and Wang, Z. (2005). Residues and source identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants. Environ. Intl., 31(6); 778–783.
Deng, H., Ye, Z.H. and Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China, Environ. Pollut., 132(1); 29–40.
Demirezen, D., and Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living insulta Marsh (Kayseri, Turkey). Chemosphere., 56(7); 685–696.
Dhir, B. and Srivastava, S. (2013). Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans. Bull. Environ. Contam Toxicol., 9(6); 720–724.
Dixit, R., Wasiullah, E.Y., Malaviya, D., Pandiyan, K,, Singh, U.B, Sahu, A., Shukla, R., Singh, B.P., Rai, J.P., Sharma, P.K., Lade, H. and Paul, D. (2015). Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability., 7(2); 2189-2212.
Duman, F., Leblebici, Z. and Aksoy, A. (2009). Bioaccumulation of Nickel, Copper, and Cadmium by Spirodela polyrhiza and Lemna gibba. J. Freshw. Ecol., 24(1); 177-179.
Favas, P.J.C., Pratas, J., Paul, M.S., Sarkar, S.K., Prasad, M.N.V. (2016). Phytofiltration of Metal(loid)-Contaminated Water: The Potential of Native Aquatic Plants. Phytoremediation, 305-343.
Guo, W., Nazim, H., Liang, Z. and Yang, D. (2016). Magnesium deficiency in plants: An urgent problem, The Crop. Journal., 4(2); 83-91.
Hou, W., Chen, X., Song, G., Wang, Q. and Chi Chang, C. (2007). Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (L. minor), Plant Physiol. Biochem., 45(1); 62-69.
Kacar, B. and İnal, A. (2008). Bitki Analizleri. Nobel Yayın No: 1241, Fen Bilimleri, 63. s. 892. Nobel Yayın Dağıtım Ltd. Şti. Ankara. (in Turkish)
Khan, A., Khan, S., Alam, M., Amjad Khan, M., Aamir, M., Qamar, Z., Rehman, Z. and Perveen, S. (2016). Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients, Chemosphere., 146; 121-128.
Khellaf, N. and Zerdaoui, M. (2010). Growth, photosynthesis and respiratory response to copper in Lemna minor: a potential use of duckweed in biomonitoring. Iranian J. Environ. Health Sci. Eng., 7(2); 299-306.
Lone, M.I., He, Z., Stoffella, P.J. and Yang, X. (2008). Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J. Zhejiang Univ. Sci. B., 9(3); 210-220.
Lu, Q., He, Z.L., Graetz, D.A., Stofella, P.J. and Yang, X. (2011). Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). J. Environ. Sci. Poll. Res., 18; 978-986.
Maathuis, F.J. (2009). Physiological functions of mineral macronutrients, Curr. Opin. Plant Biol., 12(3); 250-258.
Miretzky, P., Saralegui, A. and Cirelli, A.F. (2004). Aquatic Macrophytes Potential for the Simultaneous Removal of Heavy Metals (Buenos Aires, Argentina). Chemosphere., 57(8); 997–1005.
Mishra, V.K. and Tripathi, B.D. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic marcophytes. Bioresour. Technol., 99(15); 7091-7097.
Munyati, C. (2018). Spatial variations in plant nutrient concentrations in tissue of a grass species as influenced by grazing intensity in a confined savannah rangeland, J. Arid Environ., 155; 46-58.
Öbek, E. (2009). Bioaccumulation of heavy metals from the secondary treated municipal wastewater by Lemna gibba, Fresen. Environ. Bull., 18(11a); 2159-2164.
Parzych, A.E., Cymer, M., Jonczak, J. and Szymczyk, S. (2015). The ability of leaves and rhizomes of aquatic plants to accumulate macro-and micronutrients, J. Ecol. Eng., 16 (3); 198–205.
Paustenbach, D.J. (2000). The Practice of Exposure Assessment: A State-of-the-art Revıew. J. Toxicol. Environ. Health, Part B, 3(3); 179-291.
Priya, A., Avishek, K. and Pathak, G. (2012). Assessing the potentials of Lemna minor in the treatment of domestic wastewater at pilot scale. Environ. Monit. Assess., 184; 4301-4307.
Rakhshaee, R., Giahi, M. and Pourahmad, A. (2009). Studying effect of cell wall’s carboxyl–carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution, J. Hazard. Mater., 163(1); 165-173.
Rehman, H., Alharby, H.F., Alzahrani, Y. and Rady, M.M. (2018). Magnesium and organic biostimulant integrative application induces physiological and biochemical changes in sunflower plants and its harvested progeny on sandy soil, Plant Physiol. Biochem., 126; 97-105.
Ren, C-G., Kong, C-C., Bian, B., Liu, W., Li, Y., Luo, Y-M. and Zhi-Hong, X. (2017). Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. Int. J. Phyt., 19(9); 789-797.
Singh, D., Tiwari, A. and Gupta, R. (2012). Phytoremediation of lead from wastewater using aquatic plants. J. Agricul. Technol., 8(1); 1-11.
Sood, A., Uniyal, P.L., Prasanna, R. and Ahluwalia, A.S. (2012). Phytoremediation potential of aquatic macrophyte, Azolla. Ambio., 41(2);122-137.
Şaşmaz, A. and Öbek, E. (2012). The accumulation of silver and gold in Lemna gibba L. exposed to secondary effluents. Chemie der Erde, 72; 149-152.
Tatar, S.Y. and Öbek, E. (2014). Potential of Lemna gibba L. and Lemna minor L. for accumulation of Boron from secondary effluents. Ecol. Eng. 70; 332-336.
Tatar, S.Y., Öbek, E., Arslan Topal, E.I. and Topal, M. (2017a). Investigation of Accumulation Capacities of Lemna minor L. and Lemna gibba L. to Remove Some Micronutrients in Wastewaters, 2nd International Energy and Engineering Conference, 12-13 October 2017, p.1184-1185.
Tatar, S.Y., Öbek, E., Arslan Topal, E.I. and Topal, M. (2017b). The Ability of Aquatic Plants (Lemna gibba L. and Lemna minor L.) to Accumulate Macronutrients, 2nd International Energy and Engineering Conference, 12-13 October 2017, p.1186-1187.
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. and Sutton, D.J. (2012). Heavy Metal Toxicity and the Environment. Molecular, Clinical Environ., Toxicol., 101; 133-164.
Topal, M. and Arslan Topal, E.I. (2011). Evaluation of the Elazığ municipal wastewater treatment plant with some parameters in 2010–2011 winter season. Cumhuriyet Sci. J. 32;1–12.
Topal, M., Uslu Şenel G., Öbek, E., Arslan Topal E.I., 2014, Evaluation of Elazığ Municipal Wastewater Treatment Plant with Physicochemical Parameters. EurAsia Waste Management Symposium, p1169-1176, İstanbul/Turkey.
Topal, M., Uslu Şenel, G., Öbek, E. and Arslan Topal, E.I. (2015). Bioaccumulation of tetracycline and degradation products in Lemna gibba L.. Des. Water Treat., 57(18); 8270-8277.
Upadhyay, A.R., Mishra, V.K., Pandey Sudhir, K. and Tripathi, B.D. (2007). Biofiltration of secondary treated municipal wastewater in a tropical city. Ecol. Eng., 30; 9-15. | ||
آمار تعداد مشاهده مقاله: 678 تعداد دریافت فایل اصل مقاله: 574 |