- Abdel Latef, A. A. (2010). Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Research Communications, 38, 43-55.
- Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126.
- Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42.
- Beauchamp, C. & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287.
- Calatayud, A. & Barreno, E. (2004). Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiology and Biochemistry, 42, 549-555.
- Chance, B. & Maehly, A. C. (1995). Assay of catalases and peroxidases. In: Colowick S.P., Kaplan N.O. (ed.): Methods in Enzymology. pp. 764-775. Academic Press, New York.
- Evelin, H., Kapoor, R. & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 104, 1263-1280.
- Garcia-Sanchez, F. & Syvertsen, J. P. (2006). Salinity tolerance of Cleopatra mandarin and Carrizo citrange citrus rootstocks seedlings is affected by CO2 enrichment during growth. Journal of American Societyfor Horticultural Science, 131, 24-31.
- Genty, B., Briantais, J. M. & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87-92.
- Giri, B. & Mukerji, K. G. (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14, 307-12.
- Hartmond, U., Schaesberg, I. N. V., Graham, J. H. & Syvertsen, J. P. (1987). Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedlings. Plant and Soil, 104, 37-43.
- He, Z. Q., He, C. X., Zhang, Z. B., Zou, Z. R. & Wang, H. S. (2007). Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces, 59, 128-133.
- Hoagland, D. R. & Arnon, D. I. (1950). The water culture method for growing plants without soil. Circular California Agricultural Experiment Station Berkeley USA, 347.
- Mathur, N. & Vyas, A. (1995). Influence of VA mycorrhizae on net photosynthesis and transpiration of Ziziphus mauritiana. Journal of Plant Physiology, 147(3), 328-330.
- Melgar, J. C., Syvertsen, J. P., Martinez, V. & Garcia-sanchez, F. (2008). Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. Biologia Plantarum, 52, 385-390.
- Munns, R., James, R. A. & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025-1043.
- Murkute, A. A., Sharma, S. & Singh, S. K. (2006). Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Horticultural Science, 33, 70-6.
- Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22, 867-880.
- Navarro, J. M., Perez-Tornero, O. & Morte, A. (2014). Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology, 171, 76- 85.
- Ojala, J. C., Jarrell, W. M., Menge, J. A. & Johnson, E. L. V. (1983). Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. American Society of Agronomy, 75, 255-259.
- Phillips, J. M. & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-61.
- Porcel, R. & Ruiz-Lozano, J. M. (2004). Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany, 55 (403), 1743-1750.
- Porra, R. J. (2002). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophyll a and b. Photosynthesis Research, 73, 149-156.
- Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F. & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287-296.
- Storey, R. & Walker, R. R. (1999). Citrus and salinity. Scientia Horticulturae, 78, 39-81.
- Tozlu, I., Moore, G. A. & Guy, C. L. (2000). Effects of increasing NaCl concentration on stem elongation, dry mass production, and macro and micronutrient accumulation in Poncirus trifoliata. Australian Journal of Plant Physiology, 27, 35-42.
- Tunc-Ozdemir, M., Miller, G., Song, L., Kim, J., Sodek, A., Koussevitzky, S., Misra, A. N., Mittler, R. & Shintani, D. (2009). Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiology, 151, 421-432.
- Wu, Q. S., Zou, Y. N. & He, X. H. (2010a). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum, 32, 297-304.
- Wu, Q. S., Zou, Y. N., Liu, W., Ye, X. F., Zai, H. F. & Zhao, L. J. (2010b). Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil and Environment, 56, 470-5.
|