تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,111,390 |
تعداد دریافت فایل اصل مقاله | 97,215,111 |
بررسی اثر متقابل ژنوتیپ و محیط با جانهی داده ژنومی شبیه سازی شده با استفاده از مدل های حیوانی مختلف | ||
تولیدات دامی | ||
مقاله 3، دوره 20، شماره 3، آبان 1397، صفحه 375-387 اصل مقاله (1008.43 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jap.2018.260153.623292 | ||
نویسنده | ||
یوسف نادری* | ||
استادیار و عضو هیات علمی دانشگاه آزاد اسلامی واحد آستارا | ||
چکیده | ||
هدف از این تحقیق ارزیابی مدلهای تک-صفتی و چند-صفتی در سناریوهای مختلف ژنومی با در نظر گرفتن جانهی جهت برآورد صحت پیشبینی ژنومی و تشخیص وجود اثر متقابل ژنوتیپ و محیط (G × E) بود. دادههای ژنومی با تعداد متفاوت جایگاههای صفات کمی (90 و 900) و سطوح مختلف عدم تعادل پیوستگی (کم و زیادLD = ) برای تراکم K50 شبیهسازی شدند. سپس بهطور تصادفی 90 درصد نشانگرها حذف و در مرحله بعد این نشانگرها از طریق نرمافزار Flmpute (نسخه 2/2) جانهی شدند. میانگین صحت جانهی در سناریوهای با LD زیاد و کم بهترتیب 976/0 و 943/0 بود. در همه سناریوهای شبیهسازیشده تفاوت جزئی بین صحت ژنومی دادههای اصلی و جانهی مشاهده شد. صحت ژنومی با کاهش سطح LD، وراثتپذیری و همبستگی ژنتیکی بین صفات کاهش یافت. استفاده از مدل چند-صفتی نسبت به مدل تک- صفتی باعث افزایش صحت ژنومی شد. سطح LD و همبستگی ژنتیکی بین محیطهای مختلف، در صورت وجود اثر متقابل محیط و ژنوتیپ نقش مهمی را ایفا کردند. لحاظ کردن اثر متقابل ژنوتیپ و محیط و تأثیر آن بر افزایش صحت ژنومی از یک طرف و جانهی تراشههای با تراکم کم به تراکم زیاد (خصوصاً در سناریوهای با LD بالا) جهت کاهش هزینههای ژنومی از طرف دیگر، میتواند راه حل مناسب و کاربردی جهت بهبود انتخاب ژنومی باشد. | ||
کلیدواژهها | ||
صحت جانهی؛ صحت ژنومی؛ عدم تعادل پیوستگی؛ مدل حیوانی چند صفتی؛ همبستگی ژنتیکی | ||
مراجع | ||
1. Aguilar I, Misztal I, Legarra A and Tsuruta S (2011) Efficient computation of the genomic relationship matrix and other matrices used in single‐step evaluation. Journal of Animal Breeding and Genetics 128: 422-428. 2. Bohlouli M, Alijani S, Javaremi AN, König S and Yin T (2017) Genomic prediction by considering genotype× environment interaction using different genomic architectures. Annals of Animal Science 17: 683-701. 3. Bohlouli M, Shodja J, Alijani S and Eghbal A (2013) The relationship between temperature-humidity index and test-day milk yield of Iranian Holstein dairy cattle using random regression model. Livestock Science 157: 414-420. 4. Browning SR (2008) Missing data imputation and haplotype phase inference for genome-wide association studies. Human genetics 124: 439-450. 5. Calus M, De Haas Y, Pszczola M and Veerkamp R (2013) Predicted accuracy of and response to genomic selection for new traits in dairy cattle. Animal 7: 183-191. 6. Calus MP and Veerkamp RF (2011) Accuracy of multi-trait genomic selection using different methods. Genetics Selection Evolution 43: 26. 7. Chen L, Li C, Sargolzaei M and Schenkel F (2014) Impact of genotype imputation on the performance of GBLUP and Bayesian methods for genomic prediction. PLoS One 9: e101544. 8. Clark SA, Hickey JM and Van der Werf JH (2011) Different models of genetic variation and their effect on genomic evaluation. Genetics Selection Evolution 43: 18. 9. Falconer D and Mackay T (1996) Introduction to quantitative genetics. Longman, Harlow, UK. Introduction to quantitative genetics 4th ed Longman, Harlow, UK. pp. 183-184. 10. Felipe VP, Okut H, Gianola D, Silva MA and Rosa GJ (2014) Effect of genotype imputation on genome-enabled prediction of complex traits: an empirical study with mice data. BMC genetics 15: 149. 11. Goddard ME and Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics 10: 381-391. 12. Haile-Mariam M, Pryce J, Schrooten C and Hayes B (2015) Including overseas performance information in genomic evaluations of Australian dairy cattle. Journal of dairy science 98: 3443-3459. 13. Hammami H, Rekik B, Bastin C, Soyeurt H, Bormann J, Stoll J and Gengler N (2009) Environmental sensitivity for milk yield in Luxembourg and Tunisian Holsteins by herd management level. Journal of dairy science 92: 4604-4612. 14. Hayashi T and Iwata H (2013) A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits. BMC bioinformatics 14: 34. 15. Hayes BJ, Daetwyler HD and Goddard ME (2016) Models for genome× environment interaction: Examples in livestock. Crop Science 56: 2251-2259. 16. Ke X, Hunt S, Tapper W, Lawrence R, Stavrides G, Ghori J, Whittaker P, Collins A, Morris AP and Bentley D (2004) The impact of SNP density on fine-scale patterns of linkage disequilibrium. Human Molecular Genetics 13: 577-588. 17. Lillehammer M, Ødegård J and Meuwissen TH (2007) Random regression models for detection of gene by environment interaction. Genetics Selection Evolution 39: 105. 18. Muir W (2007) Comparison of genomic and traditional BLUP‐estimated breeding value accuracy and selection response under alternative trait and genomic parameters. Journal of Animal Breeding and Genetics 124: 342-355. 19. Mulder H, Calus M, Druet T and Schrooten C (2012) Imputation of genotypes with low-density chips and its effect on reliability of direct genomic values in Dutch Holstein cattle. Journal of dairy science 95: 876-889.
20. Pimentel EC, Wensch-Dorendorf M, König S and Swalve HH (2013) Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture. Genetics Selection Evolution 45: 12. 21. Sargolzaei M and Schenkel FS (2009) QMSim: a large-scale genome simulator for livestock. Bioinformatics 25: 680-681. 22. Sargolzaei M, Chesnais J and Schenkel F (2011) FImpute-An efficient imputation algorithm for dairy cattle populations. J Dairy Sci 94: 421. 23. Sun X, Fernando R and Dekkers J (2016) Contributions of linkage disequilibrium and co-segregation information to the accuracy of genomic prediction. Genetics Selection Evolution 48: 77. 24. Toghiani S, Aggrey S and Rekaya R (2016) Multi-generational imputation of single nucleotide polymorphism marker genotypes and accuracy of genomic selection. animal 10: 1077-1085. 25. VanRaden P, Null D, Sargolzaei M, Wiggans G, Tooker M, Cole J, Sonstegard T, Connor E, Winters M and van Kaam J (2013) Genomic imputation and evaluation using high-density Holstein genotypes. Journal of dairy science 96: 668-678. 26. Ventura RV, Miller SP, Dodds KG, Auvray B, Lee M, Bixley M, Clarke SM and McEwan JC (2016) Assessing accuracy of imputation using different SNP panel densities in a multi-breed sheep population. Genetics Selection Evolution 48: 71. 27. Weigel K, de Los Campos G, Vazquez A, Rosa G, Gianola D and Van Tassell C (2010) Accuracy of direct genomic values derived from imputed single nucleotide polymorphism genotypes in Jersey cattle. Journal of dairy science 93: 5423-5435. 28. Wientjes YC, Veerkamp RF, Bijma P, Bovenhuis H, Schrooten C and Calus MP (2015) Empirical and deterministic accuracies of across-population genomic prediction. Genetics Selection Evolution 47: 5. 29. Yin T, Pimentel E, Borstel UKv and König S (2014) Strategy for the simulation and analysis of longitudinal phenotypic and genomic data in the context of a temperature× humidity-dependent covariate. Journal of dairy science 97: 2444-2454. | ||
آمار تعداد مشاهده مقاله: 425 تعداد دریافت فایل اصل مقاله: 488 |