تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,503 |
تعداد مشاهده مقاله | 124,121,260 |
تعداد دریافت فایل اصل مقاله | 97,228,046 |
مدلسازی جریان روزانۀ رودخانه با استفاده از برنامهریزی ژنتیک و شبکۀ عصبی (مطالعۀ موردی: حوضۀ آبخیز معرّف امامه) | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 4، دوره 48، شماره 3، مهر 1395، صفحه 367-383 اصل مقاله (1.38 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2016.60095 | ||
نویسندگان | ||
احمد نوحه گر1؛ محبوبه معتمدنیا* 2؛ آرش ملکیان3 | ||
1استاد گروه برنامه ریزی مدیریت و آموزش محیط زیست، دانشکدة محیط زیست، دانشگاه تهران، کرج | ||
2دانشجوی دکتری علوم و مهندسی آبخیزداری، گروه کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس | ||
3دانشیار گروه احیای مناطق خشک و کوهستانی، دانشکدة منابع طبیعی، دانشگاه تهران، کرج | ||
چکیده | ||
فرایند بارش- رواناب پیچیده و غیرخطی است و مدلسازی آن به دلیل عدم قطعیتهای زیاد یکی از مهمترین دغدغههای پژوهشگران در حیطة مسائل منابع آب بهشمار میرود. از بین روشهای مورد استفاده، مدلهای هوشمند در پیشبینی چنین فرایندهایی مفید و مؤثرند. بنابراین، به منظور مدلسازی جریان رودخانه از روشهای شبکة عصبی مصنوعی و همچنین برنامهریزی ژنتیک به منزلة روشی صریحـ که جزو الگوریتمهای تکاملی بهشمار میرودـ در حوضة آبخیز معرّف امامه و در دورة آماری 1349 - 1350 تا 1390 - 1391 (42ساله) استفاده شد. بدین منظور، از دادههای هواشناسی و آبسنجی در مقیاس روزانه و در قالب 62 مدل پیشنهادی استفاده شد. نتایج نشان داد برنامهریزی ژنتیکی، از میان مدلهای فراوان، خطای کمتری داشت. خطای مدلها نیز وقتی که فقط از عملگرهای اصلی ریاضی و توان استفاده شد بهمراتب کمتر بود. سرانجام، با توجه به معیارهای ارزیابی مورد استفاده در این تحقیق، ساختار پیشنهادی با ورودیهای (مدل 54) دما، باران، و تأخیرهای باران تا دو روز، رطوبت نسبی و تبخیر و تعرق و تأخیر جریان تا دو روز به عنوان بهترین مدل با خطای 001/0، 031/0، و 009/0 در مرحلة آموزش و 001/0، 032/0، و 009/0 در مرحلة آزمایش بهدست آمد. | ||
کلیدواژهها | ||
بارش- رواناب؛ برنامهریزی ژنتیک؛ شبکة عصبی پرسپترون چندلایه؛ حوضة آبخیز معرّف امامه | ||
مراجع | ||
سلطانی، ع.؛ قربانی، م.ع.؛ فاخریفرد، ا.؛ دربندی، ص. و فرسادیزاده، د. (1389). برنامهریزی ژنتیک و کاربرد آن در مدلسازی فرایند بارش- رواناب، دانشآبوخاک، 1(4): 61 ـ 71. شریفی، ع.ر.؛ دینپژوه، ی.؛ فاخریفرد، ا. و مقدمنیا، ع.ر. (1392). ترکیب بهینة متغیرها برای شبیهسازی رواناب در حوضة آبخیز امامه با استفاده از آزمون گاما، دانشآبوخاک، 23(4): 59 ـ 72. فربودنام، ن.؛ قربانی، م.ع. و اعلمی، م.ت. (1388). پیشبینی جریان رودخانه با استفاده از برنامهریزی ژنتیک (مطالعة موردی حوضة آبخیز لیقوان)، دانشآبوخاک، 19(1): 107 ـ 122. مسعودی، ا.؛ پارسامهر، پ.؛ سلماسی، ف. و پوراسکندر، س. (1391). تخمین ضریب دبی در سرریزهای لبة پهن مرکب با استفاده از رگرسیون، برنامهریزی ژنتیک، و شبکة عصبی، آبوخاک، 26(4): 933 ـ 942. Aytek, A.; Asce, M. and Alp, M. (2008). An Application of Artificial Intelligence for Rainfall-Runoff Modeling, Hydrology Earth System science, 117(2): 145-155.
Chiang, J.L. and Yeh, C.H. (2010). Suspended Sediment Forecasting in Gao-Pen River using Artificial Neural Network, Vol. 12, EGU2010-7549.
Dai, X.; Huo, Z. and Wang, H. (2011). Simulation for Response of Crop Yield to SoilMoisture and Salinity with Artificial Neural Network, Field crops research, 121: 441-449.
DanandehMehr, A.; Kahya, E. and Olyaie, E. (2013). Streamflow Prediction using Linear Genetic Programming in Comparisonwith a Neuro-Wavelet Technique, Journal of Hydrology, 505: 240-249.
DanandehMehr, A.; Kahya, E. and Yerdelen, C. (2014). Linear Genetic Programming Application for Successive-Station Monthly Stream Flow Prediction, Journal of Computers and Geosciences, 70: 63-72.
Dawson, C.W and Wilby, R.L. (2001). Hydrological modeling using artificial neural network, Progress in Physical Geography, 25(1): 80-108.
Dorado, J.; Rabunal, J.R.; Pazos, A.; Rivero, D.; Santos, A. and Puertas, J. (2003). Prediction and Modeling of the Rainfall-Runoff Transformation of a Typical Urban Basin using ANN and GP, Applied Artificial Intelligence, 17: 329-343.
Farboudfam, N.; Ghorbani, M.A. and Alami, M.T. (2009). River Flow Prediction Using Genetic Programming (Case Study: Lighvan River Watershed), Journal of Soil and Water Science, 19(1): 107-122 (In Persion).
Gharaei-Manesh, S.; Fathzadeh, A. and Taghizadeh-Mehrjardi, R. (2016). Comparison of Artificial Neural Network and Decision Tree Models in Estimating Spatial Distribution of Snow Depth in a Semi-Arid Region of Iran, Cold Regions Science and Technology,122: 26-35.
Ghorbani, M.A.; Khatibi, R.; Aytek, A.; Makarynskyy, O. and Shiri, J.) 2010). Sea water Level Forecasting using Genetic Programming and Artificial Neural Networks, Computers and Geoscience, 36(5): 620-627.
Guven, A. (2009). Linear Genetic Programming for Time-Series Modeling of Daily Flow Rate, Journal of Earth System Science, 118(2): 157-173.
Harun, S.; Ahmat Nor, N.I. and Kassim, A.H.M. (2002). Artificial Neural Network Model for Rainfall-Runoff Relationship, Journal Technology, Vol. 37, (B) Dis. 2002: 1–12© University Technology Malaysia.
Hosseini, S.M. and Mahjouri, N. (2016). Integrating Support Vector Regression and a Geomorphologic ArtificialNeural Network for Daily Rainfall-Runoff Modeling, Applied Soft Computing, 38: 329-345.
Huo, Z.; Feng, S.; Kang, S.; Huang, G.; Wang, F. and Guo, P. (2012). Integrated Neural Networks for Monthly River Flow Estimation in Arid Inland Basin of Northwest China, Journal of Hydrology, 420-421: 159-170.
Jayawardena, AW; Muttil, N. and Fernando, T. (2005). Rainfall-Runoff Modelling using GeneticProgramming, International Congress on Modelling and Simulation Society ofAustralia and New Zealand, December 2005, New Zealand, PP. 1841-1847.
Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Natural Selection, A Brafdford book Cambridge, MIT Press.
Masoodi, A.; Parsamehr, P.; Salmasi, F. and Pureskandar, S. (2012). Regression Analysis, Genetic Programming and ANN to Predict Discharge Coefficient of Compound Broad Crested Weir, Journal of Water and Soil, 26(4): 933-942 (In Persion).
Pramanik, N. and Panda, R.K. (2009). Application of Neural Network and Adaptive Neurofuzzy Inference Systems for River Flow Prediction, Journal of Hydrology, 54(2): 247-260.
Sarangi, A. and Bhattacharya, A.K. (2005). Comparison of Artificial Neural Network and Regression Models for Sediment Loss Prediction from Banha Watershed in India, Agricultural water management, 28(4): 373-385.
Sharifi, A.R.; Dinpashoh, Y.; Fakheri-Fard, A. and Moghaddamnia, A.R. (2013). Optimal combination of Variables for Runoff Simulation in the Amameh Wtershed using Gamma test, Water and Soil Science, 23(4): 59-72 (In Persion).
Sinivasulu, S. and Jain, A. (2006). A comparative analysis of training methods for artificial neural network rainfall-runoff models, Applied Soft Computing, 6: 295-306.
Solaimani, K. (2009). Rainfall-Runoff Prediction Based on Artificial Neural Network (A Case Study: Jarahi Watershed), American-Eurasian Journal of Agriculture and Environment, Science, 5(6): 856-865.
Soltani, A.; Ghorbani, M.A.; Fakherifard, A.; Darbandi, S. and Farsadizadeh, D. (2010): Genetic programming and its application in modeling the rainfall-runoff process, Journal of Soil and Water, 1(4): 61-71 (In Persion).
Sudheer, P.K.; Gosain, A.K. and Ramasastri, K.S. (2002). A Data Driven Algorithm for Constructing Artificial Neural Network Rainfall- Runoff Models, Journal of Hydrology, 16(6): 1325-1330.
Tao, W.; Kailin, Y. and Yongxin, G. (2008). Application of Artificial Neural Networks to Forecasting Ice Conditions of the Yellow River in the Inner Mongolia Reach, Journal of Hydrology, 13(9): 811-816.
Wang, W.C.; Chau, K.W.; Cheng, Ch.T. and Qiu, L. (2009). A Comparison of Performance of Several Artificial Intelligence Methods for Forecasting Monthly Discharge Time Series, Journal of Hydrology, 374(3-4): 294-306.
Wu, C.L.; Chau, K.W. and Li, Y.S. (2009). Methods to Improve Neural Network Performance in Daily Flows Prediction, Journal of Hydrology, 372(1-4): 80-93. | ||
آمار تعداد مشاهده مقاله: 1,311 تعداد دریافت فایل اصل مقاله: 902 |