تعداد نشریات | 161 |
تعداد شمارهها | 6,493 |
تعداد مقالات | 70,185 |
تعداد مشاهده مقاله | 123,325,723 |
تعداد دریافت فایل اصل مقاله | 96,532,855 |
Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps | ||
Pollution | ||
مقاله 1، دوره 2، شماره 4، دی 2016، صفحه 375-386 اصل مقاله (1.08 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.7508/pj.2016.04.001 | ||
نویسندگان | ||
Mansour Halimi* 1؛ Manuchehr Farajzadeh1؛ Zahra Zarei2 | ||
1Department of Climatology, TarbiatModares University, Tehran, Iran | ||
2Department of Climatology, Lorestan University, Iran | ||
چکیده | ||
The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less than 10 μm in diameter (PM10μm). To do this, we use four geostatistical interpolation methods: Ordinary Kriging, Universal Kriging, Simple Kriging, and Ordinary Cokriging with Gaussian semivariogram, to estimate the spatial distribution surface for three mentioned air pollutants in Tehran’s atmosphere. The data were collected from 21 air quality monitoring stations located in different districts of Tehran during 2012 and 2013 for 00UTC. Finally, we evaluate the Kriging estimated surfaces using three statistical validation indexes: mean absolute error (MAE), root mean square error (RMSE) that can be divided into systematic and unsystematic errors (RMSES, RMSEU), and D-Willmot. Estimated standard errors surface or uncertainty band of each estimated pollutant surface was also developed. The results indicated that using two auxiliary variables that have significant correlation with CO, the ordinary Cokriginga scheme for CO consistently outperforms all interpolation methods for estimating this pollutant and simple Kriging is the best model for estimation of NO2 and PM10. According to optimal model, the highest concentrations of PM10 are observed in the marginal areas of Tehran while the highest concentrations of NO2 and CO are observed in the central and northern district of Tehran. | ||
کلیدواژهها | ||
air pollution؛ geostatistical schema؛ Kriging؛ uncertainty map؛ TEHRAN | ||
مراجع | ||
Avellaneda, D. (2007). Spatial interpolation techniques for estimating levels of pollutant concentrations in the atmosphere. Rev. Mex. Fis., 53 (6), 447–454.
Brajer, V., Hall, J. and Rahmatian, M. (2012). Air Pollution Its Mortality Risk and Economic Impacts in Tehran. J. Pub. Health, 41(5), 31-38.
Gretchen, T.G., James, A.M., Armistead, G.R., Katherine, G., Matthew, J.S. and Paige, E.T. (2012). Characterization of ambient air pollution measurement error in a time-series health study using a geostatistical simulation approach. Atmospheric Env., 57, 101–108
Halek, F., Kavouci, A. and Montehaie, H. (2004). Roleof motor-vehicles and trend of air borne particulate in the great Tehran area. J. Env. Health Res., 14(4), 307-313.
Halek, F., Keyanpour, M., Pirmoradi, A. and Kavousi, A. (2010). Estimation of urban suspended particulate air pollution concentration. Int. J. Env. Res., 4(1), 161-168.
Ito, K., Leon, S. De., Lippmann, M. (2005). Associations between ozone and daily mortality: Analysis and meta-analysis. Epidemiology, 16, 446 -457.
Janssen, S., Dumon, G. and Fierens, F. (2008). Clemens Mensink,Spatial interpolation of air pollution measurements using CORINE land cover data. Atmospheric Env. 42, 4884–4903.
Kakooei, H. and Kakooei, A. (2007). Measurement of PM10 PM2.5 and TSP particle concentrations in Tehran. Iranian J. of App. Scie., 7(20), 3981-3085.
Karimzadegan, H., Rahmatian, M., Farhud, D. and Yunesian, M. (2008). Economic valuation of air pollution health impacts in the Tehran area, Iran. Iranian J. Publ. Health, 37(1), 20-30.
Liang, W., Wei, H. and Kuo, H. (2009). Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Env. Res., 109, 51-58.
Moscato, U., Esposito, T. and Vanini, G. (2011). Nitrous oxide pollution: a geostatistical method to assess spatial distribution of an aesthetic gases and hospital staff exposure, human responses and building investigations. 487-492.
Rajarathnam, U., Sehgal, M., Nairy, S., Patnayak, R.C., Chhabra S.K., Kilnani, K.V.R. and Committee, HHR. (2011). Time Series study on air pollution and mortality in Dehli. Res. Rep. Health Eff. Inst., Mar., 47-74.
Rashid, Y. (2011). Urban and industrial air quality assessment and management greater Tehranarea (GTA), Iran. Accessed at: http://www.ess.co.at/WEBAIR/TEHRAN/tehran.html.
Samet, J.M., Dominic, F., Currieroi, F.C., Coursac, I. and Zeger, S.L. (2000). Fine particulate air pollution and mortality in 20 U.S. cities 1987-1994, The New England J. of Medicine, 343(24), 1742-1749.
Willmott, C.J. (1984). On the evaluation of model performance in physical geography. In Spatial Statistics and Models, ed. G. L. Gaile, and C. J. Willmott, 443-460.
Wong, D.W., Lester, Y. and Susan, A. (2004). Comparison of spatial interpolation methods for the estimation of air quality data. J. of Exposure Analysis and Env. Epidemiology, 14, 404–415.
Kavousi, A., Sefidkar, R., Alavimajd, H., Rashidi, Y. and Abolfazli, Z. (2013). Khonbi, Spatial analysis of CO and PM10 pollutants in Tehran city, J. of Paramedical Sciences, 4 (3) ISSN 2008-4978.
Weeberb, R., Ѐquia, J., Nior, H., Llacer, R. & Petros, K. (2015). A spatial multicriteria model for determining air pollution at sample locations. J. of the Air & Waste Management Association, 65:2, 232-243, DOI: 10.1080/10962247.2014.971976.
Salwan, S., Al-Hasnawi, Hussain, M. Hussain, Nadhir, Al-Ansari and Sven, K. (2016). The effect of the industrial activities on air pollution at Baiji and its surrounding areas, Iraq, Engineering, 8, 34-44. | ||
آمار تعداد مشاهده مقاله: 3,194 تعداد دریافت فایل اصل مقاله: 2,797 |