تعداد نشریات | 161 |
تعداد شمارهها | 6,480 |
تعداد مقالات | 70,037 |
تعداد مشاهده مقاله | 123,020,448 |
تعداد دریافت فایل اصل مقاله | 96,254,267 |
بکارگیری فنون همبستگی مکانی در اندازهگیری گسترش بیرویه شهرنشینی (مطالعه موردی: شهر گرگان) | ||
محیط شناسی | ||
مقاله 7، دوره 42، شماره 1، خرداد 1395، صفحه 97-113 اصل مقاله (1.72 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jes.2016.58103 | ||
نویسندگان | ||
احسان رحیمی* ؛ عبدالرسول سلمان ماهینی؛ سید حامد میرکریمی | ||
دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
چکیده | ||
گسترش بیرویه شهرنشینی نمایانگر یکی از تهدیدهای محیطزیستی مهم در دهههای اخیر است که چندین رویکرد در تجزیه و تحلیل این پدیده اتخاذ گردیده است. به منظور توصیف الگوهای مختلف شهری و چگونگی تغییر آنها در طول زمان، به معیارهایی نیاز است تا بتوان به طور پیوسته تغییرات شهرها را بررسی و کمیسازی کرد. در این راستا، تصاویر سنجش از دور به همراه فنون همبستگی مکانی ابزاری مفید در پایش و ارزیابی محیطهای شهری هستند که محققان را قادر به اندازهگیری تغییرات مداوم رشد شهر میسازند. در پژوهش حاضر به منظور کمیسازی الگوهای گسترش شهرنشینی از دادههای ماهوارههای لندستهای 5 سنجنده TM و لندست 7 سنجندهETM در یک بازه زمانی 24 ساله استفاده گردید. بدین منظور، شاخص پوشش گیاهی NDVI به عنوان ورودی آمارههای همبستگی مکانی محلی Getisو Moran به کار گرفته شد. نتایج حاصل از این مقایسات نشان داد که آمارههای همبستگی مکانی به خوبی قادر به تفکیک و شناسایی خوشههای مناطق شهری هستند که در این میان طبق نمودارهای تراکم حاصل از آماره Getis، میزان تراکم پیکسلهای مناطق شهری در سال 1365 از 0.05 به 0.11 در سال 1389 میرسد که بیانگر کارآیی بیشتر این شاخص به منظور اندازهگیری رشد شهر است. | ||
کلیدواژهها | ||
آمارههای همبستگی مکانی؛ گسترش بیرویه شهرنشینی؛ اندازهگیری تغییرات مکانی-زمانی؛ شاخص پوشش گیاهی NDVI | ||
مراجع | ||
پوراحمد، ا.، حسام، م.، آشور، ح. و محمدپور، ص. 1389. تحلیل بر الگوی گسترش کالبدی- فضایی شهر گرگان با استفاده از مدلهای آنتروپی شانون و هلدرن. مجله پژوهش و برنامهربزی شهری. سال اول، شماره سوم. صادقینیا،ع.ر.،علیجانی،ب.،ضیائیان،پ. وخالدی،ش. 1392. کاربردتکنیکهایخودهمبستگیفضاییدرتحلیلجزیرهحرارتیشهرتهران. نشریه تحقیقات کاربردی علوم جغرافیایی، سال سیزدهم، شماره 30. 90-67. کامیاب، ح.ر. و سلمانماهینی، ع.ر. 1391. الگوهای مکانی- زمانی تغییرات سیمای سرزمین و توسعه شهری (مطالعه موردی: گرگان). مجله کاربرد سنجش از دور و GIS در علوم منابع طبیعی. سال سوم. شماره دوم. Anselin, L. 1995. Local indicators of spatial association – LISA. Geographical Analysis, 27(2), 93–115.
Bailey, T.C., and Gatrell, A.C. 1995. Interactive Spatial Data Analysis. Longman Higher Education, Harlow.
Batty, M. 1997. Cellular automata and urban form: a primer” Journal - American Planning Association, Volume 63, Issue 2, pp. 266-274.
Bowman, A. W., and Azzalini, A., 1997. Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford: Oxford University Press.
Chu, H.J. Wu, CH.F. and Lin, Y.P. 2013. Incorporating spatial autocorrelation with neural networks in empirical land-use change models. Environment and Planning B: Planning and Design, volume 40, pages 384 – 404.
Cockx, K., Van de Voorde, T. and Canters, F. 2014. Quantifying uncertainty in remote sensing-based urban land-use mapping. International Journal of Applied Earth Observation and Geoinformation. 31, 154–166.
Danese, M., Lazzari, M., and Murgante, B., 2009. Geostatistics in historical macroseismic data analysis. Transactions on Computational Sciences Journal VI LNCS vol. 5730, 324–341.
Donnay, J.P., Barnsley, M.J. and Longley, P.A. 2001. Remote sensing and urban analysis. In: J.P. Donnay, M.J. Barnsley and P.A. Longley (eds.), Remote Sensing and Urban Analysis, Taylor & Francis, London and New York, pp 3–18.
Esch, T., Taubenböck, H., Heldens, W., Thiel, M., Wurm, M., Geiss, C. and Dech, S. 2010. Urban Remote sensing—How can earth observation support the sustainable development of urban environments? In Proceedings of the 15th International Conference on Urban Planning, Regional Development and Information Society, Vienna, Austria, 18–20; pp. 837–847.
Fan, c., and Myint, s. 2014. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landscape and Urban Planning 121 117– 128.
Fichera, C., Modica, G. and Pollino, M. 2011. GIS and remote sensing to study urban-rural transformation during a fifty-year period, Lecture Notes in Computer Science LNCS, Volume 6782, pp. 237-252.
Foody, G., 1996. Approaches for the Production & Evaluation of Fuzzy Land Cover Classifications From Remotely-Sensed Data. International Journal of Remote Sensing 17: 1317–1340.
Foody, G.M. 2000. Estimation of sub-pixel land cover composition in the presence of untrained classes. Computers & Geosciences 26, 469–478.
Gatrell, A.C., Bailey, T.C., Diggle, P.J. and Rowlingson, B.S., 1996. Spatial point pattern analysis and its application in geographical epidemiology. Transaction of Institute of British Geographer 21, 256–271.
Geary, R., 1954. The contiguity ratio and statistical mapping. The Incorporated Statistician, volume 5.
Getis, A., and Ord, J., 1992. The analysis of spatial association by distance statistics. Geographical Analysis, volume 24, pp. 189-206.
Janzen, J. 1986. Introductory digital image processing, Prentice-Hall, Englewood Cliffs, New Jersey.
Herold, M., Goldstein, N.C. and Clarke, K.C. 2003. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sensing of Environment, Volume 86, Issue 3, 286-302.
Herold, M., Roberts, D., Gardner, M. and P. Dennison 2004. Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm. Remote Sensing of Environment, 91, 304–319.
Jensen, J. R., and Cowen, D. C. 1999. Remote sensing of urban/suburban infrastructure and socioeconomic attributes. Photogrammetric Engineering and Remote Sensing, 65, 611–622.
Jensen, J. R. 2005. Introductory digital image processing: A remote sensing perspective (Third Edition). Upper Saddle River, NJ: Prentice Hall.
Lanorte, A., Danese, M., Lasaponara, R. and Murgante, B. 2013. Multi-scale mapping of burn area and severity using multi-sensor satellite data and spatial autocorrelation analysis. International Journal of Applied Earth Observation and Geoinformation, Elsevier, Volume 20, Pages 42–51.
Lee, J., and Wong, D.W.S. 2001. Statistical analysis with ArcView GIS. John Wiley & Sons, Inc.
Lu, D., Mausel, P., Brondizios, E. and Moran, E. 2004. Change detection techniques. International Journal of Remote Sensing, 25, 2365–2407.
Moran, P., 1948. The interpretation of statistical maps. Journal of the Royal Statistical Society 10, 243–251.
Murgante, B., Las Casas, G. and Danese, M., 2008. The periurban city: geo-statistical methods for its definition. In: Coors, M., Rumor, V., Fendal, E.M., Zlatanova, ST. (Eds.), Urban and Regional Data Management. Taylor & Francis Group, London, pp. 473–485.
Murgante, B., and Danese, M., 2011. Urban versus Rural: the decrease of agricultural areas and the development of urban zones analyzed with spatial statistics. International Journal of Agricultural and Environmental Information Systems 2 (2).
Murgante, B., and Borruso, G. 2012. Analyzing Migration Phenomena with Spatial Autocorrelation Techniques. Lecture Notes in Computer Science vol. 7334, pp. 670–685. Springer-Verlag, Berlin.
Nole, G., Danese, M., Murgante, B., Lasaponara, R. and Lanorte, A. 2012. Using Spatial Autocorrelation Techniques and Multi-temporal Satellite Data for Analyzing Urban Sprawl. Computational Science and Its Applications. 7335, 512-527.
Nolè, G., Lasaponara, R. and Murgante, B. 2013. Applying spatial autocorrelation techniques to multi-temporal satellite data for measuring urban sprawl. International Journal of Environmental Protection (IJEP), 3(7), 11-21. World Academic Publishing.ISSN: 2226-6437.
Nole, G., Tito, C., Lasaponara, R., Lanorte, A. and Murgante, B. 2014. Quantifying Urban Sprawl with Spatial Autocorrelation Techniques using Multi-Temporal Satellite Data. International Journal of Agricultural and Environmental Information Systems, 5(2), 20-38.
O’Sullivan, D., and Unwin, D., 2002. Geographic Information Analysis. John Wiley & Sons.
Palmer, M.W., Earls, P., Hoagland, B.W., White, P.S. and Wohlgemuth, T., 2002. Quantitative tools for perfecting species lists. Environmetrics 13, 121–137.
PerpinanLamigueiro, O., and Hijmans, R., 2014. R Package rasterVis, Visualization methods for the raster package.
Premo, L.S. 2004. Local spatial autocorrelation statistics quantify multi-scale patterns in distributional data: an example from the Maya Lowlands. Archaeological Science 31, 855–866.
Rocchini, D., Metz, M., Ricotta, C., Landa, M., Frigeri, A. and Neteler, M., 2013. Fourier transforms for detecting multi-temporal landscape fragmentation by remote sensing, International Journal of Remote sensing, 34:24, 8907-8916.
Seto, K.C., and Fragkias, M. 2005. Quantifying spatiotemporal patterns of urban land-use change in four cities of China with timer series landscape metrics. Landscape Ecology, 20, 871–888
Tobler, W.R. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, Volume 46, Issue 2, pp.234–240.
Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment. 8:127-150.
United Nations. 2012. World urbanization prospects. The 2011 Revision. New York.
Yichun, X., Fang, C., Lin, GCS., Gong, H. and Qiao, B. 2007. Tempo-spatial patterns of land use changes and urban development in globalizing china: a study of Beijing. Sensors, 7: 2881-2906
Zhang, Q., Ban, Y., Liu, J. and Hu, Y. 2011. Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China. Computers, Environment and Urban Systems, 35: 126-139.
Zhou, W., Cadenasso, M.L., Schwarz, K. and Pickett, S.T.A. 2014. Quantifying Spatial Heterogeneity in Urban Landscapes: Integrating Visual Interpretation and Object-Based Classification. remote sensing, 6, 3369-3386. | ||
آمار تعداد مشاهده مقاله: 1,451 تعداد دریافت فایل اصل مقاله: 875 |