تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,926 |
تعداد دریافت فایل اصل مقاله | 97,217,714 |
تعیین مناسبترین روش منحنی سنجه و مقایسة آن با شبکة عصبی مصنوعی به منظور برآورد رسوبات معلق (مطالعة موردی: استان لرستان) | ||
نشریه علمی - پژوهشی مرتع و آبخیزداری | ||
مقاله 14، دوره 68، شماره 2، شهریور 1394، صفحه 413-426 اصل مقاله (1.11 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jrwm.2015.54939 | ||
نویسندگان | ||
محسن یوسفی* 1؛ فاطمه برزگر2 | ||
1کارشناسارشد آبخیزداری، دانشکدة منابع طبیعی و کویرشناسی، دانشگاه یزد، ایران | ||
2عضو هیئتعلمی دانشکدة کشاورزی دانشگاه پیام نور، ایران | ||
چکیده | ||
برآورد میزان رسوبات معلق در رودخانهها از ابعاد مختلف کشاورزی، حفاظت خاک، سدسازی، حیات آبزیان، و همچنین جنبههای مختلف تحقیقاتی اهمیت فراوانی دارد. روشهای مختلفی برای بررسی و برآورد رسوبات معلق رودخانهها وجود دارد که البته توانایی این روشها در برآورد رسوبات متفاوت است. هدف از این مطالعه برآورد رسوبات معلق رودخانه با استفاده از شبکة عصبی پیشخور پسانتشار خطا با الگوریتم آموزشی لونبرگ- مارکوآرت و مقایسة نتایج با بهترین ترکیب منحنی سنجة رسوب و ضرایب اصلاحی است. در این مطالعه از آمار دبی و رسوب متناظر ده ایستگاه استان لرستان به صورت روزانه، ماهانه، فصلی، و دستهبندیشده استفاده شد. نتایج نشان داد از بین انواع مختلف منحنی سنجه و ضرایب اصلاحی استفادهشده، که جمعاً شامل بیست ترکیب بود، ترکیب منحنی سنجة ماهانه و ضریب اصلاحی MUVE بر اساس ضریب ناش- ساتکلیف و شاخص دقت مناسبتر است. در مرحلة بعد، نتایج حاصل از برآورد رسوب با مناسبترین منحنی سنجه با نتایج حاصل از شبکة عصبی با استفاده از ضریب ناش- ساتکلیف و مجذور میانگین مربعات خطا مقایسه شد. نتایج نشاندهندة مناسببودن شبکة عصبی پیشخور پسانتشار خطا در قیاس با منحنی سنجة رسوب است. | ||
کلیدواژهها | ||
الگوریتم لونبرگ- مارکوآرت؛ رسوبات معلق؛ شبکة عصبی؛ منحنی سنجه | ||
مراجع | ||
[1] Akbari, Z. (2010). Performance of the decision tree and regression model to estimate the amount of sediment in the dam area of Ilam, Master's thesis, Department of Natural Resources desert Studies, Yazd University (In Farsi). [2] Arabkhedri, M., Hakimkhani, Sh. and Varvani, J. (2004). The Validity of extrapolation methods in estimation of annual mean suspended sediment yield (17 Hydrometric Stations), Journal of Agricultural Science and Natural Resources, 11(3), 123-131 (In Farsi). [3] Asselman, N.E.M. (2002). Fitting and interpretation of sediment rating curves, Journal of Hydrology , 234, 228-248. [4] Barzegar, F. (2004). Comparison of methods to estimate suspended sediment (Case Study: Qezel Ozan), MSc Thesis, Department of Natural Resources, Tehran University, 120pp (In Farsi). [5] Basheer, I.A. and Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application, Journal of Microbiological Methods, 43, 3-31. [6] Bauer, P., Nouak, S. and Winkler, R. (2007). Fuzzy Mathematical Methods for soil survey and Land Evaluation, Journal of soil science, 40, 477-492. [7] Caniani, D., Pascale, S., Sdao, F. and Sole, A. (2008). Neural networks and landslide susceptibility: a case study of the urban area of Potenza, Natural Hazards, 45, 55-72. [8] Cohn, T.A., Caulder, D.A., Gilroy, E.J., Zynjuk, L.D. and Summers, R.M. (1992). The validity of a sample statistical model for estimation fluvial constituent loads: an empirical study involving nutrient loads entering Chesapeake Bay, Water Resource Research, 28(9), 2353-2363. [9] Dastorani, M.T., Azimi Fashi, Kh., Talebi, A. and Ekhtesasi, M.R. (2012). Suspended sediment estimation using Artificial Neural Network (Case Study: Jamyshan watershed in Kermanshah), The third year of watershed management Journal, 6, 61-74 (In Farsi). [10] Dehghani, A., Zanganeh, M., Mosaedi, A. and Kohestani, N. (2009). Comparison Estimate suspended loud with two method Sediment Rating curve and Artificial Neural Network (Case Stady: Dough River, Golestan Province), Issue science agriculture and natural source, 16(1), 266-276 (In Farsi). 11] Dehghani, A., Mohammad Malik, M. and Hezarjarib, A. (2010). Behesht Abad river suspended sediment estimation using artificial neural networks, Journal of Soil and Water Conservation, 17(1), 159-168 (In Farsi). [12] Feiznia, S., Ghafari, G., Karimizadeh, K. and Tabatabaezadeh, M. (2011). Determination of the Most Suitable Method for Estimation of Suspended Sediment in Hydrometric Stations Upland of Latian and Taleghan Dams, Journal of Natural Environment, Iranian Journal of Natural Resources, 64(3), 231-242 (In Farsi). [13] Hagan, M.T., Demuth, H.B. and Beale, M.H. (1996). Neural Network Design, global book store, (Spring, TX, U.S.A.), ISBN: 0971732108 / 0-9717321-0-8,734 pp. [14] Hajebakhsh, P. (2011). Bed sediment load estimated using regression decision trees and comparison with experimental method, MSC Thesis, Civil Faculty, Yazd University (In Farsi). [15] Hasonizadeh, H., Fazlalizadeh, M., Nekoyi, F and Shirdeli, A. (2012). Prediction density sediment in Karkheh River with use from neural network software, International conference 9th engineering river, Ahwaz, Chamran University (In Farsi). [16] Heikki Koivo, N. (2008). NEURAL NETWORKS: Basics using MATLAB Neural Network Toolbox, http://staff.ttu.ee/~jmajak/Neural_networks_basics_.pdf. 59 pp. [17] Hsu, K., Gupta, H.V. and Sorooshian, S. (1995). Artificial neural network modeling of the rainfall-runoff process, Water Resources Research, 31(10), 2517-2530. [18] Iadanza, C. and Napolitano, F. (2006). Sediment transport time series in the Tiber River, Physics and Chemistry of the Earth, 31, 1212-1227. [19] Jansson, M.B. (1996). Estimating a sediment rating curves of the Reventazon River at Palamo using logged mean loads within discharge classes,Journal of Hydrology, 183(4), 227-241. [20] Jones, K.R., Berney, O., Carr, D.P., and Barret, E.C. (1981). Arid zone hydrology for agricultural development, FAO Irrigation and Drainage Paper, 37, 271. [21] Kao, Sh.J., Lee, T.Y., and Milliman, J.D. (2005). Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan, TAO, 16(3), 653-675. [22] Koch, R.W. and Smillie, G.M. (1986). Comment on river loads underestimated by rating curves, Water Resources Research, 22(13), 2121-2122. [23] Lee, S., Ryu, J.H., Lee, M.J. and Won, J.S. (2006). The Application of artificial neural networks to landslide susceptibility mapping at Jan hung, Korea, Mathematical Geology, 38(2), 199-220. [24] Mosaedi, A. (1998). Hydrological sizing of sediment reservoir system for irrigation and water supply. Ph.D. Thesis, Faculty of Civil Eng, Technical University of Budapest, Hungary, 101pp. [25] Rajaee, T., Mirbagheri, S.A. and Kermani, M.Z. (2009). Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models, Science of the total environment, 407, 4916-4927. [26] Salajegeh, A. and Fathabadi, A. (2009). Assessment Possible Estimate suspended load Karaj River with beneficiary from fuzzy-logic and neural network, Range and Watershed (Iran natural source), 62(2), 271-282 (In Farsi). [27] Shabani, M. and Shabani, N. (2012). Estimation of Daily Suspended Sediment Yield Using Artificial Neural Network and Sediment Rating Curve in Kharestan Watershed, Iran, Australian Journal of Basic and Applied Sciences, 6(12), 157-164. [28] Telvari, A. (2003). The relationship between suspended sediment and certain properties in the area Dez and Karkheh Basin, Research and development, 56-57, 56-61 (In Farsi). [29] Thomas, R.B. (1985). Estimating total suspended sediment yield with probability sampling, Water Resources Research, 21(9), 1381-1388. [30] Toloie, S., Hossenzadeh, D., Ghorbani, M., Fakherifard, A., and Salmasi, F. (2011). Estimate temporal and spatial suspended loud river Ajichai with use from Geostatistics and Artificial neural network, Issue science water and soil, 21(4), 93-104 (In Farsi). [31] Vali, A., Ramesht, M., Siff, A. and Ghazavi, R. (2011). Comparison efficiency Artificial Neural Network models and regression for prediction flow sediment loud (Case Study: catchment basin Samandegan), Issue Geographic and Environment Schematization, 44(4), 19-34 (In Farsi).
| ||
آمار تعداد مشاهده مقاله: 2,100 تعداد دریافت فایل اصل مقاله: 990 |