- Aghaee-Sarbarzeh, M.,Dastfal, M., Farzadi, H., Andarzian, B., Pourshahbazi, A. Sh., Bahari, M. & Rostami, H. (2012). Evaluation of durum wheat genotypes for yield and yield stability in warm and dry areas of Iran. Seed and Plant Improvement Journal, 28-1(2), 315-325. (In Farsi)
- Aghaee-Sarbarzeh, M., Safari, H., Rostaei, M., Nadermahmoodi, K., PourSiahbidi, M. M., Hesami, A., Solaimani, K., Ahmadi, M. M. & Mohammadi, R. (2007). Study of general and specific adaptation in dryland advance wheat (Triticum aestivum L.) lines using GE biplot based on AMMI model. Pajouhesh & Sazandegi, 77, 41-48. (In Farsi)
- Akcura, M., Kaya, Y. & Taner, S. (2005). Genotype-environment interaction and phenotypic stability analysis for grain yield of durum wheat in the central Anatolian region. Turkish Journal of Agriculture and Forestry, 29(5), 369-375.
- Albert, M. J. A. (2004). A comparison of statistical methods to describe genotype × environment interaction and yield stability in multi-location maize trials. MSC. dissertation, University of Orange Free State, Bloemfontein, South Africa.
- Allard, R. W. & Bradshaw, A. D. (1964). Implications of genotype-environment interactions in applied Plant Breeding. CropSci, 4, 503-508.
- Annicchiarico, P. (2002). Genotype × environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper No. 174. Food and Agriculture Organization of the United Nations, Rome.
- Basford, K. E. & Cooper, M. (1998). Genotype × environment interactions and some considerations of their implications for wheat breeding in Australia. Australian Journal of Agricultural Research, 49(3), 153-174.
- Chapman, S. C., Crossa, J. & Edmeades, G. O. (1997). Genotype by environment effects and selection for drought tolerance in tropical maize. I. Two mode pattern analysis of yield. Euphitica, 95(1), 1-9.
- Crossa, J., Gauch, H. G. J. & Zobel, R. W. (1990). Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. CropScience, 30(3), 493-500.
- Dimitrijvic, M., Knezevic, D., Petrovic, S., Zecevic, V., Boskovic, J., Belic, M., Pejic, B. & Banjac, B. (2011). Stability of yield components in wheat (Triticum aestivum L.). Genetica, 43(1), 29-39.
- Ebdon, J. S. & Gauch, H. G. (2002). Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: II. Cultivar recommendations. Crop Science, 42(2), 497-506.
- Eberhart, S. A. & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6, 36-40.
- Finlay, K. W. & Wilkinson, G. M. (1963). The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research, 14, 742-754.
- Gauch, H. G. (1992). Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier, Amsterdam, Netherlans. 53-110.
- Guach, H. G. & Zobel, R. W. (1997). Identifying mega-environments and targeting genotypes. Crop Science, 37, 311-326.
- Haji Mohammad Ali Jahromi, M., Khodarahmi, M., Mohammadi, A. R. & Mohammadi, A. (2011). Stability analysis for grain yield of promising durum wheat genotypes in southern warm and dry agro
climatic zone of Iran. Iranian Journal of Crop Sciences, 13(3), 565-579. (In Farsi with English Abstract)
- Hussein, A. M., Bjornstad, A. & Astveit, A. H. (2000). SASG × ESTAB: A SAS program for computing genotype × environment stability statistics. Journal of Agronomy, 92, 454-459.
- Jarrah, M. & Geng, I. (1997). Variability of morpho-physiological traits of Mediterranean durum cultivars. Rachis, 16(1/2), 52-56.
- Kaya, Y., Palta, C. & Taner, S. (2002). Additive main effects and multiplicative interactions analysis of yield performance in bread wheat genotypes across environments. Turkish Journal of Agriculture and Forestry, 26, 275-279.
- Karimzadeh, R., Dehgani, H. & Dehghanpour, Z. (2008). Use of AMMI method for estimating genotype-environment interaction in early maturing corn hybrids. Seed and Plant Improvement Journal, 23(4), 537-546. (In Farsi)
- Kempton, R. A. (1984). The use of biplots in interpreting variety by environment interactions. Journal of Agricultural Science, 103, 123-135.
- Lin, C. S. (1982). Grouping genotypes by a cluster method directly related to genotype-environment interaction mean square. Theoretical and Applied Genetics, 62, 277-280.
- Mohammadi, R., Armion, M. & Ahmadi, M. M. (2011). Genotype × environment interactions for grain yield of durum wheat genotypes using AMMI model. Seed and Plant Improvement Journal, 27-1(2), 183-198. (In Farsi).
- Najafian, G., Kaffashi, A. K. & Jafar-Nezhad, A. (2010). Analysis of grain yield stability in hexaploid wheat genotypes grown in temperate regions of Iran using additive main effects and multiplicative interaction. Journal of Agricultural Science and Technology, 12(2), 213-222.
- Nikkhah, H. R., Yousefi, A., Mortazavian, S. M. & Arazmjoo, M. (2007). Analysis of yield stability of barley (Hordeum vulgare L.) genotypes- using additive main effects and multiplicative interaction (AMMI) model. Iranian Journal of Crop Sciences, 9(1), 1-13. (In Farsi)
- Perkinz, J. M. (1972). The principal component analysis of genotype-environmental interactions and physical measures of the environment. Heredity, 29, 51-70.
- Rharrabti, Y., Garcia del Miral, L. F. Villegas, D. & Royo, C. (2003). Durum wheat quality in Mediterranean environments III. Stability and comparative methods in analyzing G × E interaction. Field Crop Research, 80, 141-146.
- Schoeman, L. J. (2003). Genotype × environment interaction in sunflower (Helianthus annuus) in South Africa. M.Sc. dissertation, University of the Orange Free State, Bloemfontein.
- Shahsevand Hassani, H. & Soltaninejad, N. (2006). The study of yield and agronomical potential of two alloploid synthetic cereal [tritipyrum (AABBEbEb, 2n = 6x = 42) and triticale (2n = 6x =42, AABBRR)] with natural bread wheat allopolyploid. The 9th congress of agronomy and plant breeding. Tehran University. Iran, p: 577.
- Shahsevand Hassani, H., Caligair, P. D. & Miller, T. (2003).The chromosomal assessment of salt tolerant substituted Tritipyrum using genomic fluorescent in situ hybridization. Iranian Journal of Biotechnology, 1(3), 169-178.
- Tarakanovas, P. & Ruzgas, V. (2006). Additive main effect and multiplicative interaction analysis of grain yield of wheat varieties in Lithuania. Agronomy Research, 4(1), 91-98.
- Tai, G.C.C. (1979). Analysis of genotype environment interaction of potato yield. Crop Science, 19, 434-438.
- Vargas, M., Crossa, J. Eeuwijk, F. V. Sayre, K. D. & Reynolds, M. P. (2001). Interpreting treatment × environment interaction in agronomy trails. Agronomy Journal, 93(4): 949-960.
- Yan, W. & Hunt, L. A. (2001). Interpretation of genotype × environment interaction for winter wheat yield in Ontario. Crop Science, 41, 19-25.
- Yates, F. & Cochran, W. G. (1938). The analysis of groups of experiments. Journal of Agricultural Science, 28, 556-580.
- Zobel, R. W. & Gauch, H. G. (1996). AMMI analysis of yield trails. pp. 88-122. In: M. S. Kang and H. G. Gauch (eds.). Genotype by Environment Interaction. CRC Pub., Boca Raton, Florida.
- Zobel, R. W., Wright, M. J. & Gauch, H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80, 388-393.
|