- Ahemad, M. & Khan, M.S. (2011). Functional Aspects of Plant Growth Promoting Rhizobacteria: Recent Advancements. Insight Microbiology, 1(3), 39-54.
- Al-Karaki, G.N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109, 1-7.
- Bacilio, M., Rodriguez, H., Moreno, M., Hernandez, J.P. & Bashan, Y. (2004). Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biology & Fertility of Soils, 40, 188–193.
- Cottenie, A. (1980). Methods of Plant Analysis. In: Soil and Plant Testing. Pp, 64-100.
- Ehyaee, M. & Behbahani zadeh, A.A. (1993). The methods of soil chemistry analysis. Vol(1), No(893), Soil and Water Research Institute, Tehran. Iran. (In Farsi)
- Emami, A. (1996). Methods of plant analysis. Vol(1), No(982), Soil and Water Research Institute, Tehran. Iran. (In Farsi)
- Ghosh, S., Penterman, J.N. & Little, R.D. (2003). Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem, 41, 277-281.
- Glick, B.R., Cheng, Z. & Park, E. 2007. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol, 53, 912–918.
- Glick, B.R., Penrose, D.M. & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol, 190, 63-68.
- Khademi, Z., Rezaee, H., Malakuti, M.J. & Milani, P. (2000). Balance nutrition of canola. Tehran. Iran. (In Farsi)
- Li, J., Ovabin, D.H. & Charles, T.C. (2000). An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol, 41, 101-105.
- Li, Q., Saleh-Lakha, S. & Glick, B.R. (2005). The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol, 51, 511–514.
- Ma, W., Sebestianova, S.B., Sebestian, J. & Burd, G.I. (2003). Prevaleance of ACC- deaminase in Rhizobium spp. Antonie van leeuwenhoek, 83, 285–291.
- Marques, P.G.C., Pires, C., Moreira, H., Rangel, O.S.S. & Castro, M.L. (2010), Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology & Biochemistry, 42, 1229-1235.
- Martínez-Viveros, O., Jorquera, M.A., Crowley, D.E., Gajardo, G. & Mora, M.L. (2010). Mechanisms and practical considerations involved in plant growth promoting by rhizobacteria. J Soil Sci, Plant Nutr, 10(3), 293–319.
- Mayak, S., Tirosh, T. & Glick, B.R. (2004a). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565-572.
- Mayak, S., Tirosh, T. & Glick, B.R. (2004b). Plant growth-promoting that confer resistance to water stress in tomatoes and peppers. Plant Sci, 166, 525–530.
- Mehboob, I., Zahir, Z.A., Mahboob, A., Shahzad, S.M., Jawad, A. & Arshad. M. (2008). Preliminary screening of rhizobium isolates for improving growth of maize seedlings under axenic conditions. Soil & Environment, 27, 64-71.
- Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M. & Shahzad, S.M. (2006). Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Plant, Soil & Environment, 25, 78-84.
- Nadeem, S.M., Zahir, Z.A., Naveed, M. & Ashraf, M. (2010). Microbial ACC-Deaminase: Prospects and Applications for Inducing Salt Tolerance in Plants. Crit Rev Plant Sci, 29, 360-393.
- Patten, C.L. & Glick, B.R. (2002). Role of pseudomonas putida indole acetic acid in development of host plant root system. Appl Environ Microbiol, pp, 3795-3801.
- Penrose, D.M. & Glick, B.R. (2001). Levels of ACC and related compounds in exudates and extracts of canola seeds treated with ACC-deaminase-containing plant growth promoting bacteria. Can J Microbiol, 47, 368–372.
- Shah, S., Li, J. & Moffatt, B.A. (1998). Isolation and characterization of ACC-deaminase genes from two different plant grow - promoting rhizobacteria. Can J Microbiol, 44, 833-843.
- Shaharoona, B., Arshad, M. & Khalid, A. (2007a). Differential response of etiolated pea seedlings to inoculation with rhizobacteria capable of utilizing 1-aminocyclopropane-1-carboxylate or L-methionine. J Microbiol, 45, 15–20.
- Shaharoona, B., Arshad, M. & Zahir, Z.A. (2006). Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Letters in Applied Microbiology,42, 155-159.
- Van Loon, L.C. & Glick, B.R. (2004). Increased plant fitness by rhizobacteria. In: Sandermann H(d) Molecular ecotoxicology of plants, ecological studies, Springer, Berlin. 170, 177–205.
- Vivas, A., Marulanda, A., Ruiz-Lozano, J.M., Barea, J.M. & Azcon, R. (2003). Influence of a Bacillus sp on physiological activities of two arbuscular mycorrhizal fungi and on plant response to PEG-induced drought stress. Mycorriza, 13, 249-256.
- Glick, B.R., Penrose, D.M. & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria, J Theor Biol, 190, 63-68.
|