
تعداد نشریات | 163 |
تعداد شمارهها | 6,762 |
تعداد مقالات | 72,833 |
تعداد مشاهده مقاله | 131,771,211 |
تعداد دریافت فایل اصل مقاله | 103,495,117 |
A Fluid Dynamics-based Modified Murray Law for Hierarchical Vein Networks in Lotus Leaves: Geometry, Transport Mechanism and Biological Implications | ||
Journal of Computational Applied Mechanics | ||
دوره 56، شماره 3، مهر 2025، صفحه 663-672 اصل مقاله (733.69 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jcamech.2025.397360.1514 | ||
نویسندگان | ||
Yan-Ping Liu1؛ JI-Huan He* 2، 3، 4، 5 | ||
1College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China | ||
2School of Jia Yang; Zhejiang Shuren University, Hangzhou; Zhejiang, China | ||
3School of Information Engineering, Yango University, Fuzhou 350015, China | ||
4School of Mathematics and Big Data, Hohhot Minzu College, Hohhot, Inner Mongolia 010051, China | ||
5Department of Mathematical Sciences, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India | ||
چکیده | ||
Lotus leaf is famous for its so-called lotus effect, which has evoked many advanced biomimetic designs, especially for surface’s wetting properties, its tree-like veins are also a source of brilliant innovations. The geometry of the veins is similar to that of blood vessels, where Murray’s law can elucidate the branched structure. However, the law is not valid for the lotus’ vein structure. Here we find a new law to reveal the geometry, and its biological understanding is elucidated, furthermore Murray’s law is a special case of the new found law. Our findings may be of great biological and technological importance, especially in plant ecology, urban traffic planning, watershed planning, and chemical engineering. | ||
کلیدواژهها | ||
Hierarchical structure؛ Fluid mechanics؛ Surface-enhanced transport؛ Modified Murray law؛ Geometric potential | ||
مراجع | ||
[1] A. Marmur, The Lotus Effect: Superhydrophobicity and Metastability, Langmuir, Vol. 20, No. 9, pp. 3517-3519, 2004/04/01, 2004.
[2] C. Neinhuis, W. Barthlott, Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces, Annals of Botany, Vol. 79, No. 6, pp. 667-677, 1997/06/01/, 1997.
[3] B. Bhushan, Y. C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Progress in Materials Science, Vol. 56, No. 1, pp. 1-108, 2011/01/01/, 2011.
[4] T.-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature, Vol. 477, No. 7365, pp. 443-447, 2011/09/01, 2011.
[5] S. Achanta, J.-P. Celis, Nanotribology of MEMS/NEMS, in: E. Gnecco, E. Meyer, Fundamentals of Friction and Wear on the Nanoscale, Eds., pp. 631-656, Cham: Springer International Publishing, 2015.
[6] E. Flinn, Lotus leaf yields slick idea for MEMS, Aerosp. Am, Vol. 5, pp. 24-5, 2005.
[7] J.-H. He, PERIODIC SOLUTION OF A MICRO-ELECTROMECHANICAL SYSTEM, 2024, pp. 12, 2024-07-31, 2024.
[8] J.-H. He, Q. Bai, Y.-C. Luo, D. Kuangaliyeva, G. Ellis, Y. Yessetov, P. Skrzypacz, Modeling and numerical analysis for MEMS graphene resonator, Frontiers in Physics, Vol. Volume 13 - 2025, 2025-April-25, 2025. English
[9] D. Tian, X.-X. Li, J.-H. He, Geometrical potential and nanofiber membrane’s highly selective adsorption property, Adsorption Science & Technology, Vol. 37, No. 5-6, pp. 367-388, 2019.
[10] Y. Zhang, H. Wu, X. Yu, F. Chen, J. Wu, Microscopic Observations of the Lotus Leaf for Explaining the Outstanding Mechanical Properties, Journal of Bionic Engineering, Vol. 9, No. 1, pp. 84-90, 2012/03/01, 2012.
[11] Q. He, Y. Wang, H. Gu, J. Feng, H. Zhou, Dynamic crushing analysis of a circular honeycomb with leaf vein branched characteristic, Mechanics of Materials, Vol. 153, pp. 103566, 2021/02/01/, 2021.
[12] Q. He, Y. Wang, X. Shi, X. Jing, Y. Jiang, Crushing behavior on the cylindrical tube based on lotus leaf vein branched structure, Mechanics of Materials, Vol. 165, pp. 104205, 2022/02/01/, 2022.
[13] K. Guo, M. Liu, D. Vella, S. Suresh, K. J. Hsia, Dehydration-induced corrugated folding in Rhapis excelsa plant leaves, Proceedings of the National Academy of Sciences, Vol. 121, No. 17, pp. e2320259121, 2024.
[14] M. Tian, J. Shuai, B. A. Bishop, W. Zhang, J. Chen, X. Wang, Plant cellulose-based biomimetic artificial Small-Diameter vascular materials enabled by gradient Dual-Network entanglement, Chemical Engineering Journal, Vol. 476, pp. 146751, 2023/11/15/, 2023.
[15] W. Wu, R. M. Guijt, Y. E. Silina, M. Koch, A. Manz, Plant leaves as templates for soft lithography, RSC Advances, Vol. 6, No. 27, pp. 22469-22475, 2016.
[16] B. Feng, T. Sun, W. Wang, Y. Xiao, J. Huo, Z. Deng, G. Bian, Y. Wu, G. Zou, W. Wang, T. Ren, L. Liu, Venation-Mimicking, Ultrastretchable, Room-Temperature-Attachable Metal Tapes for Integrated Electronic Skins, Advanced Materials, Vol. 35, No. 8, pp. 2208568, 2023.
[17] C. D. Murray, The Physiological Principle of Minimum Work, Proceedings of the National Academy of Sciences, Vol. 12, No. 3, pp. 207-214, 1926.
[18] J. Haskovec, P. Markowich, G. Pilli, Murray’s law for discrete and continuum models of biological networks, Mathematical Models and Methods in Applied Sciences, Vol. 29, No. 12, pp. 2359-2376, 2019.
[19] D. Jing, S. Song, Y. Pan, X. Wang, Optimal fractal tree-like microchannel networks with slip for laminar-flow-modified Murray’s law, Beilstein Journal of Nanotechnology, Vol. 9, pp. 482-489, //, 2018.
[20] C. Hou, L. Li, R. Lv, Z. Tian, X. Chen, Mixing Performance of Micromixers with Fractal Obstacles Based on Murray's Law, Chemical Engineering & Technology, Vol. 44, No. 12, pp. 2220-2227, 2021.
[21] A. M. Talkington, R. B. Davis, N. C. Datto, E. R. Goodwin, L. A. Miller, K. M. Caron, Dermal Lymphatic Capillaries Do Not Obey Murray's Law, Frontiers in Cardiovascular Medicine, Vol. Volume 9 - 2022, 2022-April-12, 2022. English
[22] C.-H. He, C. Liu, FRACTAL DIMENSIONS OF A POROUS CONCRETE AND ITS EFFECT ON THE CONCRETE’S STRENGTH, 2023, pp. 14, 2023-04-10, 2023.
[23] C.-H. He, H.-W. Liu, C. Liu, A FRACTAL-BASED APPROACH TO THE MECHANICAL PROPERTIES OF RECYCLED AGGREGATE CONCRETES, 2024, pp. 14, 2024-07-31, 2024.
[24] T. Miao, A. Chen, L. Zhang, B. Yu, A novel fractal model for permeability of damaged tree-like branching networks, International Journal of Heat and Mass Transfer, Vol. 127, pp. 278-285, 2018/12/01/, 2018.
[25] S. YANG, H. FU, B. YU, FRACTAL ANALYSIS OF FLOW RESISTANCE IN TREE-LIKE BRANCHING NETWORKS WITH ROUGHENED MICROCHANNELS, Fractals, Vol. 25, No. 01, pp. 1750008, 2017.
[26] T. Miao, A. Chen, Y. Xu, S. Yang, B. Yu, Optimal structure of damaged tree-like branching networks for the equivalent thermal conductivity, International Journal of Thermal Sciences, Vol. 102, pp. 89-99, 2016/04/01/, 2016.
[27] J. Fan, X. Yang, Y. Liu, Fractal calculus for analysis of wool fiber: Mathematical insight of its biomechanism, Journal of Engineered Fibers and Fabrics, Vol. 14, pp. 1558925019872200, 2019.
[28] L. Li, B. Yu, Fractal analysis of the effective thermal conductivity of biological media embedded with randomly distributed vascular trees, International Journal of Heat and Mass Transfer, Vol. 67, pp. 74-80, 2013/12/01/, 2013.
[29] B. Zhou, Q. Cheng, Z. Chen, Z. Chen, D. Liang, E. A. Munro, G. Yun, Y. Kawai, J. Chen, T. Bhowmick, K. K. Padmanathan, L. G. Occhipinti, H. Matsumoto, J. W. Gardner, B.-L. Su, T. Hasan, Universal Murray’s law for optimised fluid transport in synthetic structures, Nature Communications, Vol. 15, No. 1, pp. 3652, 2024/05/07, 2024.
[30] G. Feng, A CIRCULAR SECTOR VIBRATION SYSTEM IN A POROUS MEDIUM, Facta Universitatis, Series: Mechanical Engineering, 2023.
[31] Y.-P. LIU, C.-H. HE, K. A. GEPREEL, J.-H. HE, CLOVER-INSPIRED FRACTAL ARCHITECTURES: INNOVATIONS IN FLEXIBLE FOLDING SKINS FOR SUSTAINABLE BUILDINGS, Fractals, Vol. 0, No. 0, pp. 2550041.
[32] Y.-P. Liu, J.-H. He, M. H. Mahmud, Leveraging Lotus Seeds’ Distribution Patterns For Fractal Super-Rope Optimization, FRACTALS (fractals), Vol. 33, No. 03, pp. 1-11, 2025.
[33] Y. Cheng, C.-L. Luo, C. Zhong, H. Lin, D. Marinkovic, J.-H. He, Differential equation-driven intelligent control: Integrating AI, Quantum computing, and adaptive strategies for next-generation industrial automation, Advances in Differential Equations and Control Processes, Vol. 32, No. 1, pp. 3096, 04/24, 2025.
[34] S. Zhang, H. Zhang, Y. Wang, Z. Li, Dynamic properties and numerical simulations of a fractional phytoplankton-zooplankton ecological model, Networks and Heterogeneous Media, Vol. 20, No. 2, pp. 648-669, 2025.
[35] C. Han, Y.-L. Wang, Z.-Y. Li, A high-precision numerical approach to solving space fractional Gray-Scott model, Applied Mathematics Letters, Vol. 125, pp. 107759, 2022/03/01/, 2022.
[36] H. Che, Y.-L. Wang, Z.-Y. Li, Novel patterns in a class of fractional reaction–diffusion models with the Riesz fractional derivative, Mathematics and Computers in Simulation, Vol. 202, pp. 149-163, 2022/12/01/, 2022.
[37] K. A. McCulloh, J. S. Sperry, F. R. Adler, Water transport in plants obeys Murray's law, Nature, Vol. 421, No. 6926, pp. 939-942, 2003/02/01, 2003.
[38] M. Majumder, N. Chopra, R. Andrews, B. J. Hinds, Enhanced flow in carbon nanotubes, Nature, Vol. 438, No. 7064, pp. 44-44, 2005/11/01, 2005.
[39] Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, Vol. 438, No. 7065, pp. 201-204, 2005/11/01, 2005.
[40] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Graphene-based composite materials, Nature, Vol. 442, No. 7100, pp. 282-286, 2006/07/01, 2006.
[41] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, Vol. 363, No. 6430, pp. 603-605, 1993/06/01, 1993.
[42] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, Vol. 8, No. 3, pp. 902-907, 2008/03/01, 2008.
[43] P. Sundqvist, F. J. Garcia-Vidal, F. Flores, M. Moreno-Moreno, C. Gómez-Navarro, J. S. Bunch, J. Gómez-Herrero, Voltage and Length-Dependent Phase Diagram of the Electronic Transport in Carbon Nanotubes, Nano Letters, Vol. 7, No. 9, pp. 2568-2573, 2007/09/01, 2007.
[44] J.-H. He, A New Resistance Formulation for Carbon Nanotubes, Journal of Nanomaterials, Vol. 2008, No. 1, pp. 954874, 2008.
[45] H. Ha, S. Müller, R.-P. Baumann, B. Hwang, PEAKFORCE QUANTITATIVE NANOMECHANICAL MAPPING FOR SURFACE ENERGY CHARACTERIZATION ON THE NANOSCALE: A MINI-REVIEW, 2024, pp. 12, 2024-04-01, 2024.
[46] M. A. Ilgamov, A. A. Aitbaeva, I. S. Pavlov, S. V. Dmitriev, CARBON NANOTUBE UNDER PULSED PRESSURE, 2024, pp. 18, 2024-07-31, 2024.
[47] N. Anjum, J.-H. He, Geometric potential in nano/microelectromechanical systems: Part I mathematical model, International Journal of Geometric Methods in Modern Physics, Vol. 0, No. 0, pp. 2440027.
[48] R. Zhu, K. Li, D. Wang, J. Fei, J. Yan Tan, S. Li, J. Zhang, H. Li, S. Fu, Biomimetic optimized concept with Murray networks for accelerated solar-driven water evaporation, Chemical Engineering Journal, Vol. 467, pp. 143383, 2023/07/01/, 2023.
[49] D. Ma, G. Wang, Y. Ma, C. Zhu, X. Tang, Hydrodynamics behavior and mass transfer performance of gas–liquid two-phase flow in the honeycomb fractal microreactor, Chemical Engineering Journal, Vol. 462, pp. 142228, 2023/04/15/, 2023.
[50] J. Liao, J. Nie, B. Sun, T. Jiao, M. Zhang, S. Song, A cellulose composite filter with multi-stage pores had high filtration efficiency, low pressure drop, and degradable properties, Chemical Engineering Journal, Vol. 482, pp. 148908, 2024. | ||
آمار تعداد مشاهده مقاله: 17 تعداد دریافت فایل اصل مقاله: 30 |