
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,233,664 |
تعداد دریافت فایل اصل مقاله | 102,068,033 |
Proposing a novel deep method for detection and localization of anatomical landmarks from the endoscopic video frames | ||
Journal of Algorithms and Computation | ||
دوره 56، شماره 2، اسفند 2024، صفحه 24-40 اصل مقاله (1.66 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2024.385135.1218 | ||
نویسندگان | ||
Golnaz Tajeddin* 1؛ Shima Ayyoubi Nezhad1؛ Toktam Khatibi1؛ Masoudreza Sohrabi2 | ||
1School of Industrial and Systems Engineering, Tarbiat Modares University (TMU), Tehran, Iran | ||
2Gastrointestinal and liver diseases research center, Iran University of Medical Sciences (IUMS), Tehran, Iran | ||
چکیده | ||
Early detection of gastrointestinal cancer remains a major challenge, particularly in identifying cancerous regions at their initial stages. Anatomical landmarks are crucial for guiding physicians during endoscopic screenings, with accurate localization enhancing diagnostic precision. This study proposes a deep learning approach using convolutional neural networks (CNNs) to detect and localize anatomical landmarks in endoscopic video frames from 40 patients at Firoozgar Hospital, Tehran. Pre-processed frames were annotated with bounding boxes to highlight regions of interest. The CNN model achieved 97.0% accuracy for landmark detection and classification and an MSE of 0.004 for bounding box regression, showing promise for assisting early diagnosis. | ||
کلیدواژهها | ||
Machine learning؛ Computer vision؛ Object Detection؛ Medical Image Analysis؛ Symptoms localization | ||
آمار تعداد مشاهده مقاله: 35 تعداد دریافت فایل اصل مقاله: 71 |