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ABSTRACT  ARTICLE INFO 
Early detection of gastrointestinal cancer remains a 
major challenge, particularly in identifying cancerous 
regions at their initial stages. Anatomical landmarks 
are crucial for guiding physicians during endoscopic 
screenings, with accurate localization enhancing 
diagnostic precision. This study proposes a deep 
learning approach using convolutional neural 
networks (CNNs) to detect and localize anatomical 
landmarks in endoscopic video frames from 40 
patients at Firoozgar Hospital, Tehran. Pre-processed 
frames were annotated with bounding boxes to 
highlight regions of interest. The CNN model 
achieved 97.0% accuracy for landmark detection and 
classification and an MSE of 0.004 for bounding box 
regression, showing promise for assisting early 
diagnosis. 
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1 Introduction 

According to the World Health Organization (WHO) Progress Monitor 2022, more than 75% of 
the 20.4 million premature deaths that occurred between the ages of 30 and 70 in 2019 were caused 
by non-communicable diseases [1]. Of every ten premature deaths attributed to non-communicable 
diseases, four result from cardiovascular diseases, and three are due to cancer. Cancer ranks as the 
first or second leading cause of death before age 70 in 112 of 183 countries and the third or fourth 
cause in another 23 countries [1]. 

In 2020, 19.3 million new cancer cases and 10 million cancer-related deaths were reported 
globally. Notably, 50% of new cases and 58.3% of deaths occurred in women and men in Asian 
countries, which host approximately 59.5% of the world’s population. Unlike other regions, Asia 
(58.3%) and Africa (7.2%) recorded higher cancer-related deaths than new cases [2]. 

Early cancer diagnosis significantly improves survival rates by enabling timely and appropriate 
medical intervention [3]. To address the challenges associated with early detection, computer-
aided diagnostic (CAD) systems have been developed [4]. These systems utilize artificial 
intelligence (AI) and deep learning to analyze imaging data without human intervention, thereby 
supporting physicians in their decision-making [4-6]. CAD systems employ a variety of algorithms 
and techniques to tackle tasks such as segmentation [7], classification [8], localization [9], lesion 
detection [10], and surgical instrument tracking [11]. These methods aim to overcome the 
challenges of gastrointestinal disease detection [12].  

Several advanced techniques have been proposed in this domain. Zhang et al. introduced 
convolutional neural network (CNN)-based object detection methods, including Faster Recurrent 
Convolutional Neural Networks (RCNN) and single-shot multi-box detectors (SSD), to identify 
seven classes of endoscopic images from the EDA2019 challenge dataset. They compared the 
performance of these models to demonstrate their capabilities [13, 14]. 

Another study proposed a Mask RCNN model for detecting and segmenting gastric cancer lesions 
in endoscopic video frames. The method achieved a sensitivity of 96.0% per image and an average 
Dice score of 71.0% for gastric cancer region segmentation. Their approach used a CNN to extract 
feature maps, followed by a region proposal network to identify regions of interest (ROI). The 
bounding box and lesion probability were derived from a fully connected layer, while the mask 
branch segmented lesions within the bounding box [7]. 

Caroppo et al. developed an unsupervised deep learning model for registering ROIs in wireless 
capsule endoscopy, designing a novel loss function to optimize model convergence [15]. Another 
study trained a series of deep learning models on 1,300 colonoscopy images to segment polyps 
[16].  

Hoang et al. proposed combining a Residual Neural Network with Faster RCNN for symptom 
localization in endoscopic images. They introduced a novel data augmentation method to enhance 
their results, using Faster RCNN with ResNet-50 to generate bounding boxes around polyps [17]. 
Similarly, Hong et al. designed an ensemble learning model that used Mask RCNN for both polyp 
detection and segmentation in endoscopic images [18]. 
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In another study, researchers introduced a plug-in module that concurrently detects and tracks 
polyps by combining strategies to extract spatiotemporal information for enhanced learning [19]. 
A modified Mask RCNN model was also proposed to classify gastrointestinal diseases and 
segment ulcer regions. This approach employed a pre-trained ResNet-101 model for feature 
extraction [20]. 

The effectiveness of deep convolutional neural networks (DNNs) in fields such as image analysis 
[15], video processing [21], and graph analysis [22] has inspired their widespread adoption. Their 
flexibility in architecture design, end-to-end feature extraction, and ability to achieve specific 
outcomes make DNNs the preferred choice for addressing complex challenges. 

In this study, we harnessed the potential of deep learning methods to detect and localize anatomical 
landmarks of the upper gastrointestinal tract in endoscopic video frames, aiming to assist 
physicians during endoscopic procedures. The anatomical landmarks examined include the Z-line, 
esophagus, pylorus, and antrum. 

This paper is structured as follows: Section 2 describes the dataset preparation process and the 
methodology used in this study. Section 3 outlines the analysis of performance metrics and 
evaluates the proposed method’s effectiveness. Section 4 concludes the paper and suggests 
directions for future research. 

2 Methodology 

In the following subsections, the main steps of the proposed method are explained. 

2.1 Ethics statement and dataset 

In terms of medical ethics, this study adheres to the principles outlined in the Declaration of 
Helsinki. Physicians provided the participating patients with detailed explanations about the 
study's objectives and procedures, ensuring informed consent was obtained. Patients experiencing 
stomach pain and referred to the endoscopy department of Firoozgar Hospital were recruited for 
the study. Endoscopic videos were collected from 40 patients. 

2.1.1 Data Description 

The endoscopic videos were recorded at a frame rate of 30 frames per second (fps). Images were 
extracted from these videos using the Python OpenCV library. Since the lengths of the endoscopic 
videos varied, the number of frames extracted from each video also differed. Following the 
extraction process, only frames containing anatomical landmarks—specifically the esophagus,  
Z-line, antrum, and pylorus—were selected for further analysis. 

Each image had a resolution of 576 × 768 pixels. The distribution of images across the different 
classes is presented in Figure 1. 
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Figure 1 Data description. 

 

As shown in Figure 1, a total of 1,256 images belong to the antrum and pylorus class, 1,589 images 
are classified as esophageal, and 766 images are categorized as the Z-line class. 

2.1.2 Data Preparation 

To prepare the data, regions corresponding to the anatomical landmarks described in Section 2.1.1 
were annotated using bounding boxes under expert supervision. To enhance accuracy, the 
bounding boxes were drawn in Paint software using colors that contrasted sharply with the 
surrounding tissue. 

In the subsequent step, the coordinates of the top-left corner, along with the bounding box's width 
and height, were identified using the Python OpenCV library and recorded in an Excel file for 
further processing. The detailed steps for data preparation are illustrated in Figure 2. 
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(a)  

 
(b)  

Figure 2 Steps of Data Preparation: (a) Drawing bounding boxes around anatomical landmarks, (b) 
Extracting the coordinates of each bounding box 

 

Figure 2 illustrates the data preparation steps, including drawing bounding boxes using Paint 
software and extracting their coordinates with the OpenCV library in Python. Figure 3 presents 
the dataset. 
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Figure 3 The dataset that is collected and labeled 

 

Figure 3 depicts the dataset, which includes unmasked images, masked images with bounding 
boxes highlighting anatomical landmarks, and an Excel file containing the bounding box 
coordinates and corresponding labels for each image. 

2.2 Methods 

The main steps of the proposed method for detecting and localizing anatomical landmarks in 
endoscopic video frames are illustrated in Figure 4. The details of the methodology are described 
in the following subsections: 

2.2.1 Dataset Preprocessing 

Initially, the unmasked images were resized to 96×128 pixels. The bounding box coordinates were 
subsequently rescaled and normalized to match the resized images. 

2.2.2 The Proposed Method 

Figure 4 outlines the primary steps of the proposed method along with the architecture of the CNN 
model. 
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Figure 4 The primary steps of the proposed method for detecting and localizing anatomical landmarks in 
endoscopic video frames 

 

As illustrated in Figure 4, the proposed method generates two distinct outputs: one for regressing 
the coordinates of the bounding boxes and the other for classifying the images. The resized 
unmasked images, along with the rescaled bounding box coordinates, are fed into the CNN for 
bounding box regression and anatomical landmark classification in endoscopic video frames. 

Prior to designing the CNN, the input data is split into training and validation sets in an 80:20 
ratio .The detailed architecture of the CNN is presented in Figure 5. 
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Figure 5 The CNN architecture designed for the proposed method to detect and localize anatomical 

landmarks in endoscopic video frames 

 

As illustrated in Figure 5, the CNN architecture comprises multiple layers, each serving a specific 
function. At the core of the convolutional block is the convolutional layer, a crucial component of 
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the CNN architecture, which performs both linear and non-linear operations. Convolution, a type 
of linear operation, is instrumental in extracting features from input images  [23]. The mathematical 
representation of the convolution operation is provided in Eq. (1). 

s(t) = (𝑥 ∗ 𝑤)(𝑡) (1) 
 

In Eq. (1), the output, commonly referred to as the feature map, is computed as the summation of 
the element-wise product between the first argument, known as the input, and the second argument, 
referred to as the kernel. To address challenges such as vanishing and exploding gradients, the 
CNN applies a non-linear activation function after the linear operation. 

The most widely used activation function is ReLU (Rectified Linear Unit), which is defined as 
𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). 

Another activation function, Leaky ReLU, overcomes the limitations of ReLU by allowing small 
gradients for negative input values. The Leaky ReLU is expressed mathematically in Eq. (2). 

𝐼𝑟𝑒𝑙𝑢(𝑥) =  ൜
𝛼𝑥
𝑥

         𝑖𝑓 𝑥 ≤ 0
          𝑖𝑓 𝑥 > 0

  (2) 

The next component of the convolutional block is the pooling layer, which modifies the output by 
performing a typical down-sampling operation on the feature maps. This reduces the number of 
trainable parameters, thereby lowering computational complexity. In both the convolutional and 
pooling layers, hyperparameters such as kernel size, stride, and padding play a crucial role in 
determining the performance of the model [24]. 

There are various types of pooling layers, including max pooling, average pooling, mixed pooling, 
and others [25]. Among these, max pooling is the most commonly used, as it selects the maximum 
value from each patch of the feature map. The operation performed by max pooling is 
mathematically represented in Eq. (3). 

𝑃 = max (𝑥(ିଵ)ା)ୀଵ
  (3) 

The Softmax activation function is employed in the final dense layer to classify the inputs into 
specific categories. The Softmax function transforms the outputs into a probability distribution 
over classes, as represented in Eq. (4): 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑦) =  
𝑦

∑ 𝑦
 (4) 

Another commonly used activation function, the Sigmoid, generates outputs within the range [0,1], 
making it suitable for tasks such as bounding box regression. The Sigmoid function is 
mathematically expressed in Eq. (5): 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  
1

1 + 𝑒ି௫
 (5) 

 

The CNN model is trained for 100 epochs using the Adam optimizer [26], with a learning rate of 
0.0001 and a batch size of 8. The ReLU activation function is utilized in all layers except the last 
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ones [27]. The final layer for the classification head applies the Softmax activation function, while 
the coordinate regression head uses the Sigmoid activation function. 

3 Results and Discussion 

This section presents the results of the proposed method, evaluated based on performance metrics 
for classification and bounding box coordinate regression. Table 1 summarizes the performance 
measures of the proposed method for classifying anatomical landmarks. 

Table 1: The performance metrics of the proposed method for detecting and localizing anatomical 
landmarks in endoscopic video frames 

 

 

 

 

 

 

As presented in Table 1, the proposed method achieved an overall accuracy of 97%. To further 
evaluate its classification performance across different classes of anatomical landmarks, the results 
are detailed in Table 2. 

Table 2: Macro performance metrics of the proposed method for detecting and localizing anatomical 
landmarks in endoscopic video frames 

 

 

 

 

 

 

 

 

 

An evaluation of the classification performance for each class in Table 2 reveals that the "Other" 
class, which includes the antrum and pylorus landmarks, is classified with high accuracy and 
robust performance metrics. However, a small number of z-line and esophageal landmarks were 
misclassified. 
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To evaluate the effectiveness of the coordinate bounding box regression, the regression metrics 
were analyzed and are presented in Figure 6. 

 

 
Figure 6 Evaluation of the performance metrics for bounding box regression 

The bar chart in Figure 6 illustrates the evaluation metrics for the proposed model, including R-
squared (𝑅ଶ), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Squared 
Error (MSE). The 𝑅ଶ value of 0.856 indicates a strong correlation between the predicted and actual 
values, demonstrating the model's high explanatory power. The RMSE, MAE, and MSE values—
0.065, 0.028, and 0.004, respectively—reflect the model's ability to achieve precise and accurate 
predictions. These metrics collectively highlight the effectiveness of the proposed CNN model in 
detecting and localizing anatomical landmarks from endoscopic frames with minimal error. 

Figure 7 illustrates the ROC curve for each anatomical landmark, showcasing the performance of 
the proposed method in detecting and localizing anatomical landmarks from endoscopic video 
frames. 

 
Figure 7 Visualization of the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) 

As depicted in Figure 7, the AUC values indicate the effectiveness of the proposed method.  
Figure 8 presents the accuracy and loss curves per epoch for both the training and validation 
datasets. 

 



35 S. Ayyoubi Nezhad/ JAC 56 issue 2, December 2024, PP. 24-40 

 

 
 

 
Figure 8 Accuracy and Loss per Epoch for Detection and Localization Evaluation on Training and 

Validation Data: (a) MSE of Bounding Box Regression, (b) Loss Function per Epoch, (c) Accuracy per 
Epoch 

As shown in Figure 8, the proposed method demonstrates stable performance without overfitting. 
The loss function and accuracy curves are smooth, with minimal fluctuations, indicating that the 
model converges effectively and that learning progresses steadily towards an optimal solution. 

To evaluate the performance of the bounding box regression module in the proposed method, we 
compare its results with a similar study focusing on bounding box regression for endoscopic video 
frames. The comparison is summarized in Table 3. 

Our method demonstrates significant improvements in accuracy, macro-precision, and mean 
squared error (MSE) compared to previous studies. For example, while Wan et al. [28] achieved a 
MAP of 55.8% in polyp detection, our method achieved an accuracy of 97.0% and a low MSE of 
0.004 in the classification and bounding box regression of anatomical landmarks. Furthermore, 
our method outperforms Gao et al. [8] in sensitivity (97.0% vs. 83.0%) and macro-precision 
(96.0% vs. 79.1%), offering a more robust solution for detection and localization tasks in 
endoscopic images. 
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Table 3: Comparison of the Proposed Method with Related Deep Learning Models for Detection and 
Localization in Medical Imaging 

 

Table 4 presents the processing time details of the proposed method, computed using Google 
Colab. To ensure efficient results, the maximum RAM was upgraded to 25.45 GB, and the 
maximum disk space was 107.72 GB. The GPU models available in Google Colab include 
NVIDIA K80, P100, P4, T4, and V100 GPUs. The preprocessing, dataset preparation, and 
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implementation of the proposed method were carried out using Python libraries such as Scikit-
learn, TensorFlow, Keras, and OpenCV. 

 

Table 4: The processing time for each step of implementing the proposed methods 

 

The primary objective of the proposed method is to develop novel models that leverage the 
advantages of CNNs for detecting and localizing anatomical landmarks in endoscopic video 
frames. 

4 Conclusion and future works 

Cancer is one of the leading causes of death globally, ranking as the first or second cause in 60% 
of countries worldwide. Early detection remains a significant challenge, as suspicious lesions often 
progress to malignancy before being identified. Accurate early diagnosis or prognosis of such 
lesions plays a crucial role in enabling physicians to prescribe appropriate treatments. In recent 
years, convolutional neural network (CNN) models have shown great promise in addressing these 
challenges, owing to their capabilities in end-to-end feature extraction and detection. 
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Anatomical landmarks are critical regions that guide physicians during endoscopic screenings, 
aiding in the identification of abnormalities. Accurate localization of these landmarks using 
bounding boxes can be an essential step toward supporting physicians during procedures. 

In this study, we proposed a CNN-based model designed to detect and localize anatomical 
landmarks from endoscopic video frames. The dataset was collected from 40 patients referred to 
the endoscopy department of Firoozgar Hospital with complaints of stomach pain. Endoscopic 
frames were extracted from the videos, and the landmarks were labeled with ground truth 
annotations provided by an experienced endoscopist. 

The proposed model is composed of two outputs: one predicts the coordinates of the bounding box 
around the lesions (regression), and the other classifies the detected anatomical landmarks. Feature 
maps are extracted using CNN layers, with one output classifying the input images and the other 
performing bounding box regression. 

The evaluation of the model's performance demonstrated favorable accuracy in identifying 
anatomical landmark regions. These results suggest that the proposed method has the potential to 
serve as an effective assistance tool in endoscopic screenings, helping physicians identify critical 
landmarks and improving diagnostic outcomes. 

However, the study has certain limitations. The data used for training and evaluation were collected 
from a single endoscopy department, which may limit the generalizability of the findings. 
Additionally, the study focused solely on anatomical landmarks and did not include other types of 
abnormalities, such as gastric cancer lesions. 

For future work, we plan to expand the dataset to include images from multiple medical centers to 
improve the robustness and generalizability of the model. Furthermore, we aim to extend the 
proposed approach by incorporating images of gastric cancer lesions, enabling the model to assist 
not only in anatomical landmark detection but also in the diagnosis of pathological abnormalities. 
Integration with other advanced machine learning techniques and further optimization of the 
model’s architecture will also be explored to enhance its performance and clinical applicability. 
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