تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,520,861 |
تعداد دریافت فایل اصل مقاله | 98,780,395 |
پاسخ کاملینا به تلقیح مایکوریزایی تحت سیستمهای مختلف خاکورزی و تراکمهای کاشت | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 10، دی 1403، صفحه 1803-1821 اصل مقاله (2.03 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.369753.669627 | ||
نویسندگان | ||
نسرین افتخاری نسب؛ غلامرضا محمدی* ؛ دانیال کهریزی | ||
گروه مهندسی تولید و ژنتیک گیاهی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران | ||
چکیده | ||
رعایت نشدن تناوب در دیمزارها از مشکلات اساسی تولید در ایران است. از طرفی ورود گیاه جدید به تناوب زراعی یک کشور نیاز به مطالعات همه جانبه زراعی، اقلیمی و خاکی دارد. گیاه کاملینا چند سالی است وارد کشور و بذر آن بومی سازی شده است. به این منظور آزمایشی در سالهای زراعی 1397 تا 1400 در مزرعه تحقیقاتی پردیس کشاورزی و منابع طبیعی دانشگاه رازی و به صورت اسپلیت پلات فاکتوریل با سه عامل سیستم خاکورزی، مایکوریزا و تراکم کاشت بر پایه طرح بلوکهای کامل تصادفی با سه تکرار انجام شد. کرت اصلی شامل سیستمهای خاکورزی در سه سطح، شخم رایج (گاوآهن برگردان دار و دیسک)؛ شخم حداقل (گاوآهن قلمی)، بدون شخم (کاشت مستقیم درون بقایای گیاهی) و کرت فرعی ترکیبی از دو عامل کاربرد مایکوریزا در دو سطح : کاربرد مایکوریزا و عدم کاربرد مایکوریزا و تراکم کاشت در سه سطح (300-600-900 بذر در مترمربع) بود . اثر سال بر عملکرد و اجزای عملکرد کاملینا بسیار معنی دار بود. اما اثر متقابل سال بر سایر عوامل آزمایش معنی دار نبود. نتایج نشان دادکاملینا ریشه غیرمایکوریزایی دارد و افزودن کودهای مایکوریزایی در این بررسی بر رشد و عملکرد این گیاه تاثیری نداشت. این یافته تاییدی بر نتایج به دست آمده از پژوهشهای انجام شده بر روی سایر گیاهان همخانواده کاملینا است. مطابق نتایج مقایسه میانگینها سیستم خاکورزی حداقل همراه با تراکم کاشت 900 بذر در متر مربع برای حداکثر عملکرد دانه (1570/2کیلوگرم در هکتار) و بیولوژیک ( 3135 کیلوگرم در هکتار) پیشنهاد میشود. | ||
کلیدواژهها | ||
دیمزار؛ غیرمایکوریزایی؛ قارچ مایکوریزا؛ کاملینا | ||
مراجع | ||
Ahmadi, K., Ebadzadeh, H., Hatami, F., Abdshah, H., & Kazemian, A. (2020). Agricultural statistics for the year 2018-2019: crops (volume 1). Information and Communication Technology Centre of the Ministry of Agricultural Jihad. (In Persian) Akk, E., & Ilumäe, E. (2005). Possibilities of growing Camelina sativa in ecological cultivation. Estonian Res Institute Agric, 1, 28-33. Al-Sherif, E., Hegazy, A., Gomaa, N., & Hassan, M. (2013). Allelopathic effect of black mustard tissues and root exudates on some crops and weeds. Planta Daninha, 31, 11-19. Angelopoulou, F., Tsiplakou, E., & Bilalis, D. (2020). Tillage intensity and compost application effects on organically grown camelina productivity, seed and oil quality. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2153-2166. Arihara, J., & Karasawa, T. (2000). Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize. Soil science and plant nutrition, 46(1), 43-51. Bates, B., Kundzewicz, Z., & Wu, S. (2008). Climate change and water. Intergovernmental Panel on Climate Change Secretariat. Belayneh, H. D., Wehling, R. L., Cahoon, E., & Ciftci, O. N. (2015). Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. The Journal of Supercritical Fluids, 104, 153-159. Bobrecka-Jamro, M. C. (2017). The effects of varied plant density and nitrogen fertilization on quantity and quality yield of Camelina sativa L. Emirates Journal of Food and Agriculture, 988-993. Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320, 37-77. Bücking, H., Liepold, E., & Ambilwade, P. (2012). The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. Plant Sci, 4, 108-132. Caliskan, S., Arslan, M., Arioglu, H., & Isler, N. (2004). Effect of planting method and plant population on growth and yield of sesame (Sesamum indicum L.) in a Mediterranean type of environment. Asian Journal of Plant Sciences, 3(5), 610-613. Casanoves, F., Macchiavelli, R., & Balzarini, M. 2007. Models for multi-environment yield trials with fixed and random block effects and homogeneous and heterogeneous residual variances. Journal of Agriculture of the University of Puerto Rico, 91(3–4), 117–131.Chamberlain, S. A., Bronstein, J. L., & Rudgers, J. A. (2014). How context dependent are species interactions? Ecology letters, 17(7), 881-890. Cosme, M., Fernández, I., Van der Heijden, M. G., & Pieterse, C. M. (2018). Non-mycorrhizal plants: the exceptions that prove the rule. Trends in plant science, 23(7), 577-587. Demars, B. G., & Boerner, R. E. (1996). Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span. Flora, 191(2), 179-189. Dobre, P., Farcaş, N., Udroiu, N.-A., Gidea, M., & Moraru, A. C. (2014). Research on Camelina sativa wintering, by genotype and fertilizer doses used, in the pedo-climatical conditions from the south of Romania. Romanian Biotechnological Letters, 19(6), 9964-9973. Dobre, P., & Jurcone, Ș. (2011). Camelina sativa-an oilseed crop with unique agronomic characteristics. Scientific Papers-Series A, Agronomy, 54, 425-430. Francis, R., & Read, D. (1994). The contributions of mycorrhizal fungi to the determination of plant community structure. Plant and Soil, 159, 11-25. Gesch, R., Dose, H., & Forcella, F. (2017). Camelina growth and yield response to sowing depth and rate in the northern Corn Belt USA. Industrial Crops and Products, 95, 416-421. Hocking, P., Mead, J., Good, A., & Diffey, S. (2003). The response of canola (Brassica napus L.) to tillage and fertiliser placement in contrasting environments in southern NSW. Australian Journal of Experimental Agriculture, 43(11), 1323-1335. Hu, X., Yan, S., & Li, S. (2014). The influence of error variance variation on analysis of genotype stability in multi-environment trials. Field Crops Research, 156, 84-90. Hugh, G. and H.G. Gauch. 1988. Model selection and validation for yield trials with interaction. Biometrica 44: 705- 715 Jewett, F. G. (2013). Camelina variety performance for yield, yield components and oil characteristics Colorado State University]. Johnson, E. N., Falk, K., Klein-Gebbinck, H., Lewis, L., Vera, C., Gan, Y., Hall, L., Topinka, K., Phelps, S., & Davey, B. (2010). Optimizing seeding rates and plant densities for Camelina sativa. Soils and Crops Workshop, Kahrizi, D., Kazemitabar, S., Soorni, J., Rostami-Ahmadvandi, H., Falah, F., Akbarabadi, A., Raziei, Z., & Bakhsham, M. (2016). Introducing of camelina medicinal-oil plant for dryland conditions in Iran. National Conference on the Impact of Climate Change on Plant Production, Karasawa, T., & Takebe, M. (2012). Temporal or spatial arrangements of cover crops to promote arbuscular mycorrhizal colonization and P uptake of upland crops grown after nonmycorrhizal crops. Plant and Soil, 353, 355-366. Karimi, V., Karami, E., & Keshavarz, M. (2018). Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture, 17(1), 1-15. Kelley, H. W. (1983). Keeping the land alive: soil erosion--its causes and cures (Vol. 50). Food & Agriculture Org. Keshavarz-Afshar, R., Mohammed, Y. A., & Chen, C. (2015). Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen. Energy, 91, 1057-1063. Kheiri, M., Kambouzia, J., Deihimfard, R., Yaghoubian, I., & Movahhed Moghaddam, S. (2021). Response of rainfed chickpea yield to spatio-temporal variability in climate in the Northwest of Iran. International Journal of Plant Production, 15(3), 499-510. Kiani, S., Shahraki, J., Akbari, A., & Sardar Shahraki, A. (2020). The Effect of Climate Change on Iran's Agricultural Production: A Case Study of Wheat Crop. Applied Field Crops Research, 32(04), 109-127. Kiani Ghalehsard, S, Shahraki, J, Akbari, A, & shahraki, A.S. (2020). Investigating the Effects of climate change on food security of Iran. journal of natural environment hazards, 8(22 ), 19-40. (In Persian) Koide, R. T., & Peoples, M. S. (2012). On the nature of temporary yield loss in maize following canola. Plant and Soil, 360, 259-269. Lagrange, A., Ducousso, M., Jourand, P., Majorel, C., & Amir, H. (2011). New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Canadian Journal of Microbiology, 57(1), 21-28. Lambers, H., & Teste, F. P. (2013). Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game. Plant Cell Environ, 36(11), 1911-1915. Leclère, M., Lorent, A.-R., Jeuffroy, M.-H., Butier, A., Chatain, C., & Loyce, C. (2021). Diagnosis of camelina seed yield and quality across an on-farm experimental network. European Journal of Agronomy, 122, 126190.
Moarrefzadeh, N, Sharifi, R, Khateri, H, & Abbasi, S. (2020). Biological control of Fusarium oxysporum f. sp. ciceris, the causal agent of the fusarial yellowing and wilting of chickpea by mixtures of some microbial agents. Biological control of pests and plant disease, 9(1 ), 61-73. (In Persian) Morra, M., & Kirkegaard, J. (2002). Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biology and Biochemistry, 34(11), 1683-1690. Mosse, B. (1981). Vesicular-arbuscular mycorrhiza research for tropical agriculture. Munyanziza, E. (2001). Afforestation of Semiarid Areas of Tanzania: Focusing on the Root Compartment. Combating Desertification with Plants, 241-248. Olsson, P. A., & Tyler, G. (2004). Occurrence of non‐mycorrhizal plant species in south Swedish rocky habitats is related to exchangeable soil phosphate. Journal of Ecology, 92(5), 808-815. Olsen, SR and Sommers, LE, 1982. Phosphorus. Pp. 403–430. In Page AL, Miller RH and KeeneyDR (eds). Methods of Soil Analysis, part 2. ASA and SSSA, Medison, Wisconsin Pakpour, S., & Klironomos, J. (2015). The invasive plant, Brassica nigra, degrades local mycorrhizas across a wide geographical landscape. Royal Society Open Science, 2(9), 150300. Parker, A. (2014). Camelina sativa: success of a temperate biofuel crop as intercrop in tropical conditions of Mhow, Madhya Pradesh, India. Current Science, 107(3), 359. Parvizi, Y., Bayat, R., Arabkhedri, M., & Fatehi, S.. (2020). Determination of Main Agents Affecting Soil Erosion in Rainfed Land of Kermanshah Province Using Rainfall Simulator. Iranian journal of watershed management science and engineering, 14(49 ), 70-82. (In Persian) Pellerin, S., Mollier, A., Morel, C., & Plenchette, C. (2007). Effect of incorporation of Brassica napus L. residues in soils on mycorrhizal fungus colonisation of roots and phosphorus uptake by maize (Zea mays L.). European Journal of Agronomy, 26(2), 113-120. Phillips, J., & Hayman, D. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society, 55(1), 158-IN118. Playsted, C. W., Johnston, M. E., Ramage, C. M., Edwards, D. G., Cawthray, G. R., & Lambers, H. (2006). Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytologist, 170(3), 491-500. Putnam, D., Budin, J., Field, L., & Breene, W. (1993). Camelina: a promising low-input oilseed. New crops, 314, 322. Ranji, Z.E, Mesbah, M, Amiri, R, & Vahedi, S. (2005). Study on the efficiency of ammi method and pattern analysis for determination of stability in sugar beet varieties. Iranian journal of crop science, 7(1), 1-20. (In Persian) Righini, D., Zanetti, F., Martínez-Force, E., Mandrioli, M., Toschi, T. G., & Monti, A. (2019). Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Industrial Crops and Products, 137, 66-73. Rinaudo, V., Bàrberi, P., Giovannetti, M., & van der Heijden, M. G. (2010). Mycorrhizal fungi suppress aggressive agricultural weeds. Plant and Soil, 333, 7-20. Roper, M., Ward, P., Keulen, A., & Hill, J. (2013). Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil and Tillage Research, 126, 143-150. Scavo, A., & Mauromicale, G. (2020). Integrated weed management in herbaceous field crops. Agronomy, 10(4), 466. Shane, M. W., & Lambers, H. (2005). Cluster roots: a curiosity in context. Plant and Soil, 274, 101-125. Sharifi,M., Karimi, F., & Khanpour Ardestani, N. (2010). Mycorrhiza (Physiology and Biotechnology). Tehran: House of Biology. (In Persian). Smith, S., & Read, D. (2008). Mycorrhizal symbiosis third edition introduction. Mycorrhizal Symbiosis, 1-9. Solis, A., Vidal, I., Paulino, L., Johnson, B. L., & Berti, M. T. (2013). Camelina seed yield response to nitrogen, sulfur, and phosphorus fertilizer in South Central Chile. Industrial Crops and Products, 44, 132-138. Takato (2017). Applied Research and Development center. Https://takato.ir. (In Persian). Tester, M., Smith, S., & Smith, F. (1987). The phenomenon of" nonmycorrhizal" plants. Canadian journal of botany, 65(3), 419-431. Veiga, R. S., Jansa, J., Frossard, E., & van der Heijden, M. G. (2011). Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PloS one, 6(12), e27825. Vetsch, J. A., & Randall, G. W. (2002). Corn production as affected by tillage system and starter fertilizer. Agronomy Journal, 94(3), 532-540. Vierheilig, H., & Ocampo, J. (1990). Effect of isothiocyanates on germination of spores of G. mosseae. Soil Biology and Biochemistry, 22(8), 1161-1162. Walia, M. K., Zanetti, F., Gesch, R. W., Krzyżaniak, M., Eynck, C., Puttick, D., Alexopoulou, E., Royo-Esnal, A., Stolarski, M. J., & Isbell, T. (2021). Winter camelina seed quality in different growing environments across Northern America and Europe. Industrial Crops and Products, 169, 113639. Yuan, L., & Li, R. (2020). Metabolic engineering a model oilseed Camelina sativa for the sustainable production of high-value designed oils. Frontiers in Plant Science, 11, 11.
| ||
آمار تعداد مشاهده مقاله: 40 تعداد دریافت فایل اصل مقاله: 58 |