
تعداد نشریات | 162 |
تعداد شمارهها | 6,623 |
تعداد مقالات | 71,544 |
تعداد مشاهده مقاله | 126,895,609 |
تعداد دریافت فایل اصل مقاله | 99,943,136 |
Optimizing Job Rotation through Biorhythm Analysis and Artificial Neural Network (ANN) Methodology | ||
Interdisciplinary Journal of Management Studies (Formerly known as Iranian Journal of Management Studies) | ||
دوره 18، شماره 2، تیر 2025، صفحه 305-319 اصل مقاله (1.31 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijms.2024.374861.676686 | ||
نویسندگان | ||
Pedram Safaiyan؛ Abbas Ali Rastgar* | ||
Department of Economics, Management and Administrative Sciences, Semnan University, Semnan, Iran | ||
چکیده | ||
Job rotation is defined as workers rotating between tasks with different exposure levels and occupational demands. Implementing effective job rotation strategies poses challenges, especially in determining the optimal timing and sequencing of rotations to ensure that employees are suitably matched with job roles. Existing studies indicate that many expectations regarding job rotation have not been fully achieved, as the prediction and measurement of its impact on organizational and individual productivity have not been adequately researched. A critical factor influencing individual productivity is the fluctuation in employee performance, driven by the cyclical mental and physical characteristics of employees, known as biorhythms. Current job rotation models do not adequately address biorhythms, which are inherently difficult to predict. No methodologies have been proposed to model, analyze, or predict these fluctuations in the context of job rotation strategies. This research addresses this gap by developing an artificial neural network (ANN) algorithm capable of modeling complex biorhythmic patterns derived from employee performance data. The proposed model refines job rotation strategies by optimizing the alignment between worker capacities and workstation demands. The method is also applied to an industrial case study, demonstrating its applicability and potential to improve overall operational efficiency. | ||
کلیدواژهها | ||
Job rotation؛ Multi criteria decision making؛ Artificial Neural Network (ANN)؛ Intelligent decision support systems؛ Biorhythmic analysis | ||
مراجع | ||
Ali, O., Abdelbaki, W., Shrestha, A., Elbasi, E., Alryalat, M. A. A., & Dwivedi, Y. K. (2023). A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge, 8(1), 100333. doi.org/10.1016/j.jik.2023.100333
Alias, N. E., Othman, R., Hamid, L. A., Salwey, N. S., Romaiha, N. R., Samad, K. A., & Masdek, N. R. N. (2018). Managing job design: The roles of job rotation, job enlargement and job enrichment on job satisfaction. Journal of Economic & Management Perspectives, 12(1), 397-401.
Alzeraif, M., & Cheaitou, A. (2023). Artificial intelligence-based optimization models for the technical workforce allocation and routing problem considering productivity. International Journal of Advanced Computer Science & Applications, 14(12). doi.org/10.14569/ijacsa.2023.0141233
Amrutha, V. N., & Geetha, S. N. (2020). A systematic review on green human resource management: Implications for social sustainability. Journal of Cleaner production, 247, 119131. doi.org/10.1016/j.jclepro.2019.119131
Ayough, A., Zandieh, M., & Farhadi, F. (2020). Balancing, sequencing, and job rotation scheduling of a U-shaped lean cell with dynamic operator performance. Computers & Industrial Engineering, 143, 106363. doi.org/10.1016/j.cie.2020.106363
Battini, D., Berti, N., Finco, S., Zennaro, I., & Das, A. (2022). Towards industry 5.0: A multi-objective job rotation model for an inclusive workforce. International Journal of Production Economics, 250, 108619. doi.org/10.1016/j.ijpe.2022.108619
Bautista, P. Z. N., & Cahigas, M. M. L. (2024). Exploring employee retention among generation Z engineers in the Philippines using machine learning techniques. Sustainability, 16(12), 5207. doi.org/10.3390/su16125207
Botti, L., Calzavara, M., & Mora, C. (2021). Modelling job rotation in manufacturing systems with aged workers. International Journal of Production Research, 59(8), 2522-2536. doi.org/10.1080/00207543.2020.1735659
Dias, N. F., Tirloni, A. S., dos Reis, D. C., & Moro, A. R. P. (2020). Risk of slaughterhouse workers developing work-related musculoskeletal disorders in different organizational working conditions. International Journal of Industrial Ergonomics, 76, 102929. doi.org/10.1016/j.ergon.2020.102929
Diego-Mas, J. A. (2020). Designing cyclic job rotations to reduce the exposure to ergonomics risk factors. International Journal of Environmental Research and Public Health, 17(3), 1073. doi.org/10.3390/ijerph17031073
Gasparovich, E., Uskova, E., & Dongauzer, E. (2021, March). Application of the modeling method for personnel management information system in the digital economy. In IV International Scientific and Practical Conference (pp. 1-5). doi.org/10.1145/3487757.3490883
Geethanjali, N., Ashifa, K. M., Raina, A., Patil, J., Byloppilly, R., & Rajest, S. S. (2024). Application of strategic human resource management models for organizational performance. In Data-Driven Decision Making for Long-Term Business Success (pp. 1-19). IGI Global. doi.org/10.4018/979-8-3693-2193-5.ch001
Jasmine, S., & Kania, T. N. (2022). The effects of job rotation practices on employee performance: A research on junior managers, senior operation and operation staff at the defense manufacturing industry in Indonesia. JEES: Journal of Economic Empowerment Strategy, 5(1), 27-45. doi.org/10.23969/jess.v5i1.4991
Kovacova, M., & Lăzăroiu, G. (2021). Sustainable organizational performance, cyber-physical production networks, and deep learning-assisted smart process planning in Industry 4.0-based manufacturing systems. Economics, Management and Financial Markets, 16(3), 41-54. doi.org/10.22381/emfm16320212
Li, J. (2024). Synergistic analysis of performance appraisal and job rotation in enterprise renewal and optimization. Journal of Education, Humanities and Social Sciences, 29, 124-130. doi.org/10.54097/8mqkfm39
Liang, G., Nipo, D. T., & Wong, S. Y. (2023). Impact of Job Rotation System on the Employees Performance-Based on Chinese State-owned Enterprises. International Journal of Business Research in Social Sciences, 13(11), 1316-1328. doi.org/10.6007/IJARBSS/v13-i11/19480
Mehdizadeh, A., Vinel, A., Hu, Q., Schall Jr, M. C., Gallagher, S., & Sesek, R. F. (2020). Job rotation and work-related musculoskeletal disorders: A fatigue-failure perspective. Ergonomics, 63(4), 461-476. doi.org/10.1080/00140139.2020.1717644
Mlekus, L., & Maier, G. W. (2021). More hype than substance? A meta-analysis on job and task rotation. Frontiers in Psychology, 12, 633530. doi.org/10.3389/fpsyg.2021.633530
Padula, R. S., Comper, M. L. C., Sparer, E. H., & Dennerlein, J. T. (2017). Job rotation designed to prevent musculoskeletal disorders and control risk in manufacturing industries: A systematic review. Applied Ergonomics, 58, 386-397. doi.org/10.1016/j.apergo.2016.07.018
Prunet, T., Absi, N., Borodin, V., & Cattaruzza, D. (2024). Optimization of human-aware logistics and manufacturing systems: A survey on the human-aware models. EURO Journal on Transportation and Logistics, 100137. doi.org/10.1016/j.ejtl.2024.100137
Putz-Anderson, V. (2017). Cumulative trauma disorders. CRC Press. doi.org/10.1201/9781315140704
Rastgar, A., Farhadinejad, M., Khalili, M., & Malek, S. (2020). Exploring the role of biorhythm and its dimensions in employees’ resilience. Journal of Iranian Public Administration Studies, 3(3), 1-25. doi.org/10.22034/jipas.2021.290675.1189
Rodgers, W., Murray, J. M., Stefanidis, A., Degbey, W. Y., & Tarba, S. Y. (2023). An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Human Resource Management Review, 33(1), 100925. doi.org/10.1016/j.hrmr.2022.100925
Saputra, T., & Tjahjono, H. K. (2024). Bibliometric analysis of research publication trends on job rotation satisfaction. Revista de Gestão Social e Ambiental, 18(9), e05312-e05312. doi.org/10.24857/rgsa.v18n9-018
Shafie, M. R., Khosravi, H., Farhadpour, S., Das, S., & Ahmed, I. (2024). A cluster-based human resources analytics for predicting employee turnover using optimized Artificial Neural Networks and data augmentation. Decision Analytics Journal, 11, 100461. doi.org/10.1016/j.dajour.2024.100461
Shahiri, H., Husin, K. A., & Khain, W. C. (2023). The effect of job rotation in a fixed wage setting model. Sage Open, 13(1), 21582440231153846. doi.org/10.1177/21582440231153846
Shahreki, J., Ganesan, J., Raman, K., Chin, A. L. L., & Chin, T. S. (2019). The effect of human resource information system application on employee satisfaction and turnover intention. Entrepreneurship and Sustainability Issues, 7(2), 1462. doi.org/10.9770/jesi.2019.7.2(47)
Sharma, S., & Malodia, L. (2022). Competency mapping: Building a competent workforce through competency-based human resource information system. Journal of Information and Optimization Sciences, 43(7), 1749-1762. doi.org/10.1080/02522667.2022.2128530
Sheikhalishahi, M., Pintelon, L., & Azadeh, A. (2016). Human factors in maintenance: A review. Journal of Quality in Maintenance Engineering, 22(3), 218-237. doi.org/10.1108/JQME-12-2015-0064
Soligon, S. D., da Silva, D. G., Bergamasco, J. G. A., Angleri, V., Júnior, R. A. M., Dias, N. F., Nóbrega, S., de Castro Cesar, M., & Libardi, C. A. (2020). Suspension training vs. traditional resistance training: Effects on muscle mass, strength and functional performance in older adults. European Journal of Applied Physiology, 120, 2223-2232. doi.org/10.1007/s00421-020-04446-x
Syed, S. M., Subbalakshmi, A. V. V. S., Singh, D., Emani, S., & Basava, R. K. (2023). Design and analysis of human resources using artificial intelligence. Journal of Law and Sustainable Development, 11(9), e829-e829. doi.org/10.55908/sdgs.v11i9.829
Tharmmaphornphilas, W., & Norman, B. A. (2007). A methodology to create robust job rotation schedules. Annals of Operations Research, 155, 339-360. doi.org/10.1007/s10479-007-0219-8
Wahdaniah, R. S., Ambalele, E., & Tellu, A. H. (2023). Human resource management transformation in the digital age: Recent trends and implications. International Journal of Applied Research and Sustainable Sciences, 1(3), 239-258. doi.org/10.59890/ijarss.v1i3.902
Yousefi, T., Ahmadi, M., & Qaffari, R. (2023). The providing a model for improving the physiological performance of human resources, based on the biorhythm cycle in educational-therapeutic centers. Iranian Journal of Educational Sociology, 6(3), 74-89. doi.org/10.61186/ijes.6.3.74
| ||
آمار تعداد مشاهده مقاله: 138 تعداد دریافت فایل اصل مقاله: 45 |