
تعداد نشریات | 163 |
تعداد شمارهها | 6,761 |
تعداد مقالات | 72,821 |
تعداد مشاهده مقاله | 131,622,883 |
تعداد دریافت فایل اصل مقاله | 103,410,186 |
اثر افزودن امولسیفایر و مولتیآنزیم در جیرههای حاوی کنجاله کلزا با سطوح متفاوت انرژی بر عملکرد، ریختشناسی روده و گرانروی محتویات گوارشی در جوجههای گوشتی | ||
علوم دامی ایران | ||
دوره 56، شماره 2، تیر 1404، صفحه 369-389 اصل مقاله (1.94 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijas.2024.379324.654020 | ||
نویسندگان | ||
سپیده گزانی1؛ منصور رضایی* 2؛ محمد کاظمی فرد1 | ||
1گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران | ||
2گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
چکیده | ||
دریک آزمایش فاکتوریل 2×2×2، اثر دو سطح مولتیآنزیم وموزایم (صفر و 01/0 درصد) و دو سطح امولسیفایر (صفر و 05/0 درصد) در جیره حاوی کنجاله کلزا با دو سطح انرژی (توصیه شده و 100 کیلو کالری کمتر) بر عملکرد، ریختشناسی روده و گرانروی محتویات گوارشی، 800 جوجهگوشتی نر سویه راس 308 به مدت 42 روز بررسی شد. استفاده از آنزیم در دورههای آغازین، رشد و کل دوره سبب بهبود ضریب تبدیل خوراک، مساحت پرز و کاهش گرانروی محتویات هضمی در ژژنوم و ایلئوم شد. افزودن امولسیفایر به جیره، سبب بهبود ضریب تبدیل خوراک در دورههای آغازین، پایانی و کل دوره و افزایش ارتفاع پرز در ژژنوم و کاهش گرانروی محتویات هضمی در ژژنوم شد. سطح انرژی توصیه شده، سبب بهبود ضریب تبدیل خوراک در دورههای رشد، پایانی و کل دوره آزمایش و افزایش ارتفاع پرز در دئودنوم شد. اثر متقابل آنزیم و امولسیفایر سبب بهبود ضریب تبدیل خوراک در دورههای آغازین، پایانی و کل دوره در مقایسه با جیرههای بدون افزودن آنزیم و امولسیفایر شد. اثر متقابل آنزیم و امولسیفایر در جیره با سطح پایین انرژی در دوره پایانی در مقایسه با جیرههای با سطح توصیه شده انرژی با استفاده از آنزیم و یا امولسیفایر تاثیر معنی دار بر ضریب تبدیل خوراک نداشت. نتایج این آزمایش نشان داد، استفاده از مولتیآنزیم وموزایم و امولسیفایر در جیرههای حاوی کلزا ، با سطح انرژی پایینتر از مقدار توصیه شده سبب بهبود ضریب تبدیل خوراک در دوره پایانی و کل دوره، افزایش مساحت پرز و کاهش گرانروی محتویات هضمی در ژژنوم شد. | ||
کلیدواژهها | ||
امولسیفایر؛ جوجههای گوشتی؛ ضریب تبدیل خوراک؛ گرانروی؛ مولتی آنزیم | ||
مراجع | ||
منابعروفچایی، امین؛ رضایی پور، وحید؛ وطن دور، صفیه و زعفریان، فائقه (1398). تأثیرکربوهیدراتهای جیره ،به صورت جداگانه یا در ترکیب با فیتازی ااسیدیکننده، بر عملکرد، ریخت شناسی روده و جمعیت میکروبی در جوجههای گوشتی تغذیه شده با جیره بر پایه گندم. تغذیه حیوانات، 5 (1)، 63- 67 . مجدالحسینی، لیلا؛ قاسمی، حسینعلی؛ حاج خدادادی، ایمان و مرادی، محمد حسین (1398). پاسخهای تغذیهای و فیزیولوژیکی جوجههای گوشتی به مکملهای غذایی با لسیتین سویا در سطوح مختلف انرژی قابل سوخت و ساز و منابع مختلف چربی. مجله تغذیه بریتانیا، 122 (8)، 863-872. RERERENCES Alzawqari, M., Moghaddam, H. N., Kermanshahi, H., & Raji, A. R. (2011). The effect of desiccated ox bile supplementation on performance, fat digestibility, gut morphology and blood chemistry of broiler chickens fed tallow diets. Journal of Applied Animal Research, 39(2), 169-174. doi.org/10.1080/09712119.2011.580999 An, J. S., Yun, W., Lee, J. H., Oh, H. J., Kim, T. H., Cho, E. A., .& Cho, J. H. (2020). Effects of exogenous emulsifier supplementation on growth performance, energy digestibility, and meat quality in broilers. Journal of Animal Science and Technology, 62(1), 43.doi: 10.5187/jast.2020.62.1.43 Attia, Y. A., Al-Harthi, M. A., & El-Shafey, A. S. (2020). Influence of different time and frequency of multienzyme application on the efficiency of broiler chicken rearing and some selected metabolic indicators. Animals, 10(3), 450. https://doi.org/10.3390/ani10030450 Bontempo, V., Comi, M., Jiang, X. R., Rebucci, R., Caprarulo, V., Giromini, C., ... & Baldi, A. (2018). Evaluation of a synthetic emulsifier product supplementation on broiler chicks. Animal Feed Science and Technology, 240, 157-164.doi.org/10.1016/j.anifeedsci.2018.04.010 Braddley, G. L., Savage, T. F., & Timm, K. I. (1994). The effects of supplementing diets with Saccharomyces cerevisiae var. boulardii on male poult performance and ileal morphology. Poultry Science, 73(11), 1766-1770.doi: 10.3382/ps.0731766 Brautigan, D. L., Li, R., Kubicka, E., Turner, S. D., Garcia, J. S., Weintraut, M. L., & Wong, E. A. (2017). Lysolecithin as feed additive enhances collagen expression and villus length in the jejunum of broiler chickens. Poultry Science, 96(8), 2889-2898.doi.org/10.3382/ps/pex078 Classen, H. L. (2013). Response of broiler chickens to dietary energy and its relationship to amino acid nutrition. Choct, M. (1997). Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling International, 191(1), 13-26 Choct, M., Dersjant-Li, Y., McLeish, J., & Peisker, M. (2010). Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Australasian Journal of Animal Sciences, 23(10), 1386-1398. doi:10.5713/ajas.2010.90222 Danicke, S., Vahjen, W., Simon, O., &Jeroch, H. (1999). Effects of dietary fat type and xylanase supplementation to rye-based broiler diets on selected bacterial groups adhering to the intestinal epithelium. on transit time of feed, and on nutrient digestibility. Poultry Science, 78(9), 1292-1299.doi.org/10.1093/ps/78.9.1292 de França, T. P., de Sousa Ferreira, R., Leo, R. A. R., de Oliveira, C. H., Dias, K. M. M., Gomes, K. M., ... & Albino, L. F. T. (2023). Effects of carbohydrase and phytase enzymes supplementation within low energy diets on performance and energy utilization of broiler chickens. Livestock Science, 274, 105271. doi:10.1016/j.livsci.2023.105271 de Oliveira, L. S., Balbino, E. M., Silva, T. N. S., Ily, L., da Rocha, T. C., Strada, E. S. D. O., ... & de Brito, J. Á. G. (2019). Use of emulsifier and lipase in feeds for broiler chickens. doi:10.5433/1679-0359.2019v40n6Supl2p3181 FAO (2020): Channels of transmission to food and agriculture, FAO Publications, Rome Giacobbo, F. C., Eyng, C., Nunes, R. V., de Souza, C., Teixeira, L. V., Pilla, R., ... &Bortoluzzi, C. (2021). Influence of enzyme supplementation in the diets of broiler chickens formulated with different corn hybrids dried at various temperatures. Animals, 11(3), 643. doi.org/10.3390/ani11030643 Gitzelmann, R., &Auriccio, S. (1965). The handling of soya alpha-galactosides by a normal and a galactosemic child. Gopinger, E., Xavier, E. G., Elias, M. C., Catalan, A. A. S., Castro, M. L. S., Nunes, A. P., & Roll, V. F. B. (2014). The effect of different dietary levels of canola meal on growth performance, nutrient digestibility, and gut morphology of broiler chickens. Poultry Science, 93(5), 1130-1136.doi: 10.3382/ps.2013-03426 Heijden, M. V. D., & Haan, D. D. (2010). Optimising moisture while maintaining feed quality. Hossain, M. E., & Das, G. B. (2014). Effect of Crude Soybean Oil Sediment as a Substitute for Refined Soybean Oil in Broiler Diet. Iranian Journal of Applied Animal Science, 4(3). Jansen, M., Nuyens, F., Buyse, J., Leleu, S., & Van Campenhout, L. (2015). Interaction between fat type and lysolecithin supplementation in broiler feeds. Poultry Science, 94(10), 2506-2515 doi: 10.3382/ps/pev181 Jaroni, D. I. V. Y. A., Scheideler, S. E., Beck, M., & Wyatt, C. (1999). The effect of dietary wheat middlings and enzyme supplementation. 1. Late egg production efficiency, egg yields, and egg composition in two strains of Leghorn hens. Poultry Science, 78(6), 841-847. doi:10.1093/ps/78.6.841 Jha, R., Fouhse, J. M., Tiwari, U. P., Li, L., & Willing, B. P. (2019). Dietary fiber and intestinal health of monogastric animals. Frontiers in veterinary science, 6, 48. doi: 10.3389/fvets.2019.00048 Johnson, I. T., & Gee, J. M. (1981). Effect of gel-forming gums on the intestinal unstirred layer and sugar transport in vitro. Gut, 22(5), 398-403. doi: 10.1136/gut.22.5.398 Joshi, A., Paratkar, S. G., & Thorat, B. N. (2006). Modification of lecithin by physical, chemical and enzymatic methods. European Journal of Lipid Science and Technology, 108(4), 363-373.doi:10.1002/ejlt.200600016 Kaczmarek, S. A., Bochenek, M., Samuelsson, A. C., & Rutkowski, A. (2015). Effects of glyceryl polyethylene glycol ricinoleate on nutrient utilisation and performance of broiler chickens. Archives of animal nutrition, 69(4), 285-296.doi: 10.1080/1745039X.2015.1061722 Kamiya, S., Nagino, M., Kanazawa, H., Komatsu, S., Mayumi, T., Takagi, K., ... & Nimura, Y. (2004). The value of bile replacement during external biliary drainage: an analysis of intestinal permeability, integrity, and microflora. Annals of Surgery, 239(4), 510-517. Kheravii, S. K., Morgan, N. K., Swick, R. A., Choct, M., & Wu, S. B. (2018). Roles of dietary fibre and ingredient particle size in broiler nutrition. World's Poultry Science Journal, 74(2), 301-316. DOI:10.1017/S0043933918000259 Khonyoung, D., Yamauchi, K., & Suzuki, K. (2015). Influence of dietary fat sources and lysolecithin on growth performance, visceral organ size, and histological intestinal alteration in broiler chickens. Livestock Science, 176, 111-120.doi.org/10.1016/j.livsci.2015.03.011 Konieczka, P., &Smulikowska, S. (2018). Viscosity negatively affects the nutritional value of blue lupin seeds for broilers. Animal, 12(6), 1144-1153.doi.org/10.1017/S1751731117002622 Krogdahl, Å. (1985). Digestion and absorption of lipids in poultry. The Journal of nutrition, 115(5), 675-685.doi: 10.1093/jn/115.5.675 Kubiś, M., Kołodziejski, P., Pruszyńska-Oszmałek, E., Sassek, M., Konieczka, P., Górka, P., ... & Kaczmarek, S. A. (2020). Emulsifier and xylanase can modulate the gut microbiota activity of broiler chickens. Animals, 10(12), 2197. DOI: 10.3390/ani10122197. Laudadio, V and V. Tufarelli. (2010). Growth performance and carcass and meat quality of broiler chickens fed diets containing micronized-dehulled peas (Pisum sativum cv. Spirale) as a substitute of soybean meal. Poultry Science, 1537- 1543. Lai, W., Huang, W., Dong, B., Cao, A., Zhang, W., Li, J., & Zhang, L. (2018). Effects of dietary supplemental bile acids on performance, carcass characteristics, serum lipid metabolites and intestinal enzyme activities of broiler chickens. Poultry Science, 97(1), 196-202.doi.org/10.3382/ps/pex288 Leeson, S., & SUMMERS, J. (2001). Scott: r Nufritionofthe Chicken Leming, R., & Lember, A. (2005). Chemical composition of expeller-extracted and cold-pressed rapeseed cake. Agraarteadus, 16(2), 96-109 Leonard, S. G., Sweeney, T., Bahar, B., Lynch, B. P., & O'Doherty, J. V. (2011). Effect of dietary seaweed extracts and fish oil supplementation in sows on performance, intestinal microflora, intestinal morphology, volatile fatty acid concentrations and immune status of weaned pigs. British Journal of Nutrition, 105(4), 549-560.doi: 10.1017/S0007114510003739 Long, C., Qi, X. L., & Venema, K. (2022). Chemical and nutritional characteristics, and microbial degradation of rapeseed meal recalcitrant carbohydrates: A review. Frontiers in nutrition, 9, 948302.doi.org/10.3389/fnut.2022.948302 Majdolhosseini, L., Ghasemi, H. A., Hajkhodadadi, I., & Moradi, M. H. (2019). Nutritional and physiological responses of broiler chickens to dietary supplementation with de-oiled soyabean lecithin at different metabolisable energy levels and various fat sources. British Journal of Nutrition, 122(8), 863-872.(In Persian).doi: 10.1017/S000711451900182X Mohammadigheisar, M., Kim, H. S., & Kim, I. H. (2018). Effect of inclusion of lysolecithin or multi-enzyme in low energy diet of broiler chickens. Journal of Applied Animal Research, 46(1), 1198-1201. doi:10.1080/09712119.2018.1484358 Negawoldes, T. Y. (2018). Review on nutritional limitations and opportunities of using rapeseed meal and other rape seed by-products in animal feeding. J Nutr Health Food Eng, 8(1), 43-48.doi: 10.15406/jnhfe.2018.08.00254 Niu, Y., Rogiewicz, A., Shi, L., Patterson, R., & Slominski, B. A. (2022). The effect of multi-carbohydrase preparations on non-starch polysaccharides degradation and growth performance of broiler chickens fed diets containing high inclusion level of canola meal. Animal Feed Science and Technology, 293, 115450. doi:10.1016/j.anifeedsci.2022.115450 Rodriguez-Sanchez, R., Tres, A., Sala, R., Guardiola, F., & Barroeta, A. C. (2019). Evolution of lipid classes and fatty acid digestibility along the gastrointestinal tract of broiler chickens fed different fat sources at different ages. Poultry Science, 98(3), 1341-1353.doi: 10.3382/ps/pey458 Roofchaei, A., Rezaeipour, V., Vatandour, S., &Zaefarian, F. (2019). Influence of dietary carbohydrases, individually or in combination with phytase or an acidifier, on performance, gut morphology and microbial population in broiler chickens fed awheat-based diet. Animal Nutrition, 5(1), 63-67.(In Persian)doi: 10.1016/j.aninu.2017.12.001 Rovers, M., &Excentials, O. (2014). Saving energy and feed cost with nutritional emulsifier. Intl. Poult. Prod, 22(4), 7-8. Sakamoto, K., Hirose, H., Onizuka, A., Hayashi, M., Futamura, N., Kawamura, Y., & Ezaki, T. (2000). Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. Journal of Surgical Research, 94(2), 99-106.doi: 10.1006/jsre.2000.5937 Sheen-Chen, S. M., Chen, H. S., Ho, H. T., Chen, W. J., Sheen, C. C., & Eng, H. L. (2002). Effect of Bile Acid Replacement on Endotoxin-induced Tumor Necrosis Factor-a Production in Obstructive Jaundice. World Journal of Surgery, 26, 448-450. Soares, M., & Lopez-Bote, C. J. (2002). Effects of dietary lecithin and fat unsaturation on nutrient utilisation in weaned piglets. Animal Feed Science and Technology, 95(3-4), 169-177.https://doi.org/10.1016/S0377-8401(01)00324-8 Slominski, B. A., & Campbell, L. D. (1990). Non‐starch polysaccharides of canola meal: quantification, digestibility in poultry and potential benefit of dietary enzyme supplementation. Journal of the Science of Food and Agriculture, 53(2), 175-184.doi.org/10.1002/jsfa.2740530205 Slominski, B. A. (2011). Recent advances in research on enzymes for poultry diets. Poultry Science, 90(9), 2013-2023.doi.org/10.3382/ps.2011-01372 Sun, Q., Liu, D., Guo, S., Chen, Y., & Guo, Y. (2015). Effects of dietary essential oil and enzyme supplementation on growth performance and gut health of broilers challenged by Clostridium perfringens. Animal Feed Science and Technology, 207, 234-244. doi:10.1016/j.anifeedsci.2015.06.021 Tejeda, O.J., & Kim, W.K. (2021). Role of dietary fiber in poultry nutrition. Animals, 11(2), 461.doi:org/10.3390/ani11020461 Tiwari, U. P., Chen, H., Kim, S. W., & Jha, R. (2018). Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Animal Feed Science and Technology, 245, 77-90.doi.org/10.1016/j.anifeedsci.2018.07.002 Van Nieuwenhuyzen, W., & Tomás, M. C. (2008). Update on vegetable lecithin and phospholipid technologies. European journal of lipid science and technology, 110(5), 472-486. doi:10.1002/ejlt.200800041 Watts, E. S., Rose, S. P., Mackenzie, A. M., &Pirgozliev, V. R. (2021). Investigations into the chemical composition and nutritional value of single-cultivar rapeseed meals for broiler chickens. Archives of Animal Nutrition, 75(3), 209-221.doi: 10.1080/1745039X.2021.1930455 Wickramasuriya, S., Kim, E., Shin, T. K., Cho, H. M., Kim, B., Patterson, R., ... & Heo, J. M. (2019). Multi-carbohydrase addition into a corn-soybean meal diet containing wheat and wheat by products to improve growth performance and nutrient digestibility of broiler chickens. Journal of Applied Poultry Research, 28(2), 399-409. doi:10.3382/japr/pfz002
Wickramasuriya, S. S., Macelline, S. P., Cho, H. M., Hong, J. S., Park, S. H., & Heo, J. M. (2020). Physiological effects of a tallow-incorporated diet supplemented with an emulsifier and microbial lipases on broiler chickens. Frontiers in Veterinary Science, 7, 583998.doi.org/10.3389/fvets.2020.583998 Wickramasuriya, S. S., Macelline, S. P., Kim, E., Shin, T. K., Cho, H. M., Jayasena, D. D., & Heo, J. M. (2022). Exogenous emulsifiers and multi-enzyme combination improves growth performance of the young broiler chickens fed low energy diets containing vegetable oil. Animal bioscience, 35(10),1585. doi: 10.5713/ab.22.0024 Yadav, S., & Jha, R. (2021). Macadamia nut cake as an alternative feedstuff for broilers: effect on growth performance. Animal Feed Science and Technology, 275, 114873.doi.org/10.1016/j.anifeedsci.2021.114873 Yoon, J. H., Ingale, S. L., Kim, J. S., Kim, K. H., Lee, S. H., Park, Y. K., ... & Chae, B. J. (2012). Effects of dietary supplementation of antimicrobial peptide-A3 on growth performance, nutrient digestibility, intestinal and fecal microflora and intestinal morphology in weanling pigs. Animal Feed Science and Technology, 177(1-2), 98-107.doi.org/10.1016/j.anifeedsci.2012.06.009 Zheng, Y., Zheng, M., Ma, Z., Xin, B., Guo, R., & Xu, X. (2015). Sugar fatty acid esters. In Polar lipids (pp. 215-243). Elsevier.https://doi.org/10.1016/B978-1-63067-044-3.50012-1 | ||
آمار تعداد مشاهده مقاله: 105 تعداد دریافت فایل اصل مقاله: 47 |