تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,119,011 |
تعداد دریافت فایل اصل مقاله | 97,225,259 |
کاربرد کنسرسیوم باکتریایی مولد بیوسورفکتانت و تجزیهکننده نفت در افزایش ضریب آبگذری خاک آلوده به TPH | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 9، آذر 1403، صفحه 1585-1599 اصل مقاله (1.75 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.376847.669716 | ||
نویسندگان | ||
کمیل زینالی1؛ شایان شریعتی2؛ احمدعلی پوربابائی* 3؛ مهدی شرفا3 | ||
1گروه علوم و مهندسی خاک، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2گروه مهندسی محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران. | ||
3گروه مهندسی علوم خاک، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج ، ایران | ||
چکیده | ||
آلودگی نفتی به عنوان یکی از تهدیدات مهم حوزه حاصلخیزی خاک و تولیدات گیاهی شناخته شده است. آلودگی ناشی از هیدروکربنهای نفتی، با کاهش هدایت هیدرولیکی خاکها، منجر به افزایش فرسایش و رواناب و کاهش رشد گیاه میشود. یکی از راههای اصلاح خاکهای آلوده به هیدروکربنهای نفتی، استفاده از میکروارگانیسمهای مولد بیوسورفکتانت با قابلیت تجزیه هیدروکربنهای نفتی است. در این مطالعه توانایی سویههای باکتریایی موثر در تجزیه نفت خام شامل: Dietzia aerolata PS14B1، Kocuria salina PS12B2 و Mesobacillus harenae PS9D12 در قالب یک کنسرسیوم میکروبی در تغییرات ضریب آبگذری یک خاک آلوده به نفت با آلودگی زیاد بررسی شدند. در آزمون توانایی رشد سویهها و تجزیه هیدروکربنهای نفتی در محیط پایه معدنی بعد از 7 روز گرماگذاری، نتایج نشان داد که سویههای PS14B1، PS12B2 و PS9D12 به ترتیب موفق به کاهش هیدروکربنهای نفتی کل (TPH) به میزان 63/25 %، 11/24 % و 83/22 % شدند که تفاوت معنیداری با شاهد داشتند (P<0.05). نتایج آزمایشات تلقیح سویهها در محیط خاک و بعد از 30 روز انکوباسیون نشان داد، کنسرسیوم فوق موفق به افزایش هدایت هیدرولیکی خاک از 18/1 به 12/9 سانتیمتر بر ساعت شده است که نسبت به تیمار شاهد (24/3 سانتیمتر بر ساعت) معنیدار بود. بنابراین، میتوان از این سویهها در اصلاح پایدار محلهای آلوده به ترکیبات نفتی و تعدیل وضعیت آبگذری خاکهای آلوده استفاده کرد. | ||
کلیدواژهها | ||
آلودگی نفتی؛ بیوسورفکتانت؛ تجزیه زیستی؛ نفت خام؛ هدایت هیدرولیکی | ||
مراجع | ||
Adieze, I. E., Orji, J. C., Nwabueze, R. N., & Onyeze, G. O. C. (2012). Hydrocarbon stress response of four tropical plants in weathered crude oil contaminated soil in microcosms. International Journal of Environmental Studies, 69(3), 490-500. Akinwumi, I. I., Adeyeri, J. B., & Ejohwomu, O. A. (2013). Effects of steel slag addition on the plasticity, strength, and permeability of lateritic soil. In ICSDEC 2012: Developing the Frontier of Sustainable Design, Engineering, and Construction (pp. 457-464). Alexander, M. (1983). Most probable number method for microbial populations. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 815-820. Almansoory, A. F., Hasan, H. A., Abdullah, S. R. S., Idris, M., Anuar, N., & Al-Adiwish, W. M. (2019). Biosurfactant produced by the hydrocarbon-degrading bacteria: Characterization, activity and applications in removing TPH from contaminated soil. Environmental technology & innovation, 14, 100347. Al-Marri, S., Eldos, H. I., Ashfaq, M. Y., Saeed, S., Skariah, S., Varghese, L., ... & Raja, M. M. (2023). Isolation, identification, and screening of biosurfactant-producing and hydrocarbon-degrading bacteria from oil and gas industrial waste. Biotechnology Reports, 39, e00804. Athar, H. U. R., Ambreen, S., Javed, M., Hina, M., Rasul, S., Zafar, Z. U., ... & Ashraf, M. (2016). Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants. Environmental Science and Pollution Research, 23, 18320-18331. Avizhgan, A., Asadi, H., Mohammadi, M. H., & Gorji, M. (2021). Assessment of Surface Sealing Formation and Its Relationship with Soil Quality Indices. Iranian Journal of Soil and Water Research, 52(6), 1501-1514. Baoune, H., Aparicio, J. D., Pucci, G., Ould El Hadj-Khelil, A., & Polti, M. A. (2019). Bioremediation of petroleum-contaminated soils using Streptomyces sp. Hlh1. Journal of Soils and Sediments, 19, 2222-2230. Black, C. A. (1965). Method of soil analysis part 2. Chemical and microbiological properties, 9, 1387-1388. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464-465. Bremner, J. M. (1965). Total nitrogen. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 1149-1178. Chen, W., Kong, Y., Li, J., Sun, Y., Min, J., & Hu, X. (2020). Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers. International Biodeterioration & Biodegradation, 154, 105047. Clark, F. E. (1965). Agar-plate method for total microbial count. In: C. A. Black, D. D. Evans, L. E. Ensminger, J. L.White, & F. E. Clark (Eds.), Methods for soil analysis. Part 2 chemical and microbiological properties (pp. 1461–1465). Concepta Goveas, L., Alva, M., Menezes, J., Krishna, A., Salian, A., & Sajankila, S. P. (2022). Optimization of degradation of petroleum crude oil by Lysinibacillus sp. SS1 in seawater by response surface methodology. Journal of Applied Biotechnology Reports, 9(1), 494-503. Dastgheib, S. M. M., Tirandaz, H., Moshtaghi Nikou, M., Ramezani, M., Shavandi, M., Amoozegar, M. A., & Ventosa, A. (2017). Prauserella oleivorans sp. nov., a halophilic and thermotolerant crude-oil-degrading actinobacterium isolated from an oil-contaminated mud pit. International Journal of Systematic and Evolutionary Microbiology, 67(9), 3381-3386. Devatha, C. P., Vishnu Vishal, A., & Purna Chandra Rao, J. (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science, 9, 1-10. Devatha, C. P., Vishnu Vishal, A., & Purna Chandra Rao, J. (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science, 9, 1-10. Gyasi, S. F., Sarfo, M. K., Kabo-Bah, A. T., Adu, B., Appiah, A. S., & Serfor-Armah, Y. (2024). In vitro assessment of crude oil degradation by Acinetobacter junii and Alcanivorax xenomutans isolated from the coast of Ghana. Heliyon, 10(3). Hamidi, Y., Ataei, S. A., & Sarrafi, A. (2021). Biodegradation of total petroleum hydrocarbons in oily sludge: a comparative study of biostimulation, bioaugmentation, and combination of methods. Journal of Chemical Technology & Biotechnology, 96(5), 1302-1307. Hewelke, E., & Gozdowski, D. (2020). Hydrophysical properties of sandy clay contaminated by petroleum hydrocarbon. Environmental Science and Pollution Research, 27(9), 9697-9706. Hossain, M. F., Akter, M. A., Sohan, M. S. R., Sultana, N., Reza, M. A., & Hoque, K. M. F. (2022). Bioremediation potential of hydrocarbon degrading bacteria: isolation, characterization, and assessment. Saudi Journal of Biological Sciences, 29(1), 211-216. Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Ramu Dirisala, V., & Kodali, V. P. (2018). Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum, 4(3), 241-249. Khalifa, A. Y. (2017). Degradation of diesel-oil by a newly isolated Kocuria sediminis DDK6. African Journal of Microbiology Research, 11(10), 400-407. Khobragade, V. B., & Kulkarni, S. D. (2019). Isolation and biochemical characterization of bacteria from petroleum hydrocarbon contaminated soils from Maharashtra, India. Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment international, 60, 71-80. Lee, D. W., Lee, H., Kwon, B. O., Khim, J. S., Yim, U. H., Kim, B. S., & Kim, J. J. (2018). Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environmental pollution, 241, 254-264. Li, Z., Rosenzweig, R., Chen, F., Qin, J., Li, T., Han, J., ... & Ronen, Z. (2022). Bioremediation of Petroleum-Contaminated Soils with Biosurfactant-Producing Degraders Isolated from the Native Desert Soils. Microorganisms, 10(11), 2267. Mehetre, G. T., Dastager, S. G., & Dharne, M. S. (2019). Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria. Science of the total environment, 679, 52-60. Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5), 914-916. Mishra, A., Saxena, A., & Singh, S. P. (2019). Isolation and characterization of microbial strains from refinery effluent to screen their bioremediation potential. J Pure Appl Microbiol, 13(4), 2325-2332. Nayarisseri, A., Singh, P., & Singh, S. K. (2018). Screening, isolation and characterization of biosurfactant producing Bacillus subtilis strain ANSKLAB03. Bioinformation, 14(6), 304. Nazina, T. N., Shumkova, E. S., Sokolova, D. S., Babich, T. L., Zhurina, M. V., Xue, Y. F., ... & Tourova, T. P. (2015). Identification of hydrocarbon-oxidizing Dietzia bacteria from petroleum reservoirs based on phenotypic properties and analysis of the 16S rRNA and gyr B genes. Microbiology, 84, 377-388. Nazir, A. K. (2011). Effect of motor oil contamination on geotechnical properties of over consolidated clay. Alexandria Engineering Journal, 50(4), 331-335. Nelson, D. A., & Sommers, L. (1983). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539-579. Nikitha, T., Satyaprakash, M., Vani, S. S., Sadhana, B., & Padal, S. B. (2017). A review on polycyclic aromatic hydrocarbons: their transport, fate and biodegradation in the environment. Int. J. Curr. Microbiol. Appl. Sci, 6(4), 1627-1639. Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture. Othman, A. R., Ismail, N. S., Abdullah, S. R. S., Hasan, H. A., Kurniawan, S. B., Sharuddin, S. S. N., & Ismail, N. I. (2022). Potential of indigenous biosurfactant-producing fungi from real crude oil sludge in total petroleum hydrocarbon degradation and its future research prospects. Journal of Environmental Chemical Engineering, 10(3), 107621. Phulpoto, I. A., Yu, Z., Li, J., Ndayisenga, F., Hu, B., Qazi, M. A., & Yang, X. (2022). Evaluation of di-rhamnolipid biosurfactants production by a novel Pseudomonas sp. S1WB: Optimization, characterization and effect on petroleum-hydrocarbon degradation. Ecotoxicology and Environmental Safety, 242, 113892. Rayment, G. E., & Higginson, F. R. (1992). Australian laboratory handbook of soil and water chemical methods. Inkata Press Pty Ltd. Sattar, S., Siddiqui, S., Shahzad, A., Bano, A., Naeem, M., Hussain, R., ... & Yasmin, H. (2022). Comparative Analysis of Microbial Consortiums and Nanoparticles for Rehabilitating Petroleum Waste Contaminated Soils. Molecules, 27(6), 1945. Shah, G., & Soni, V. (2024). Comprehensive Insights into the Impact of Oil Pollution on the Environment. Regional Studies in Marine Science, 103516. Shariati, S., Ebenau-Jehle, C., Pourbabaee, A. A., Alikhani, H. A., Rodriguez-Franco, M., Agne, M., ... & Boll, M. (2021). Degradation of dibutyl phthalate by Paenarthrobacter sp. Shss isolated from Saravan landfill, Hyrcanian Forests, Iran. Biodegradation, 1-12. Sharuddin, S. S. N., Abdullah, S. R. S., Hasan, H. A., Othman, A. R., & Ismail, N. I. (2021). Potential bifunctional rhizobacteria from crude oil sludge for hydrocarbon degradation and biosurfactant production. Process Safety and Environmental Protection, 155, 108-121. Silva, R. D. C. F., Almeida, D. G., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2014). Applications of biosurfactants in the petroleum industry and the remediation of oil spills. International journal of molecular sciences, 15(7), 12523-12542. Sobri, I. M., Halim, M., Lai, O. M., Lajis, A. F., Yusof, M. T., Halmi, M. I. E., ... & Wasoh, H. (2018). Emulsification characteristics of rhamnolipids by Pseudomonas aeruginosa using coconut oil as carbon source. Journal of Environmental Microbiology and Toxicology, 6(1), 7-12. Su, H., Lin, J., & Wang, Q. (2021). A clean production process on oily sludge with a novel collaborative process via integrating multiple approaches. Journal of Cleaner Production, 322, 128983. Sutton, N. B., Maphosa, F., Morillo, J. A., Abu Al-Soud, W., Langenhoff, A. A., Grotenhuis, T., ... & Smidt, H. (2013). Impact of long-term diesel contamination on soil microbial community structure. Applied and Environmental Microbiology, 79(2), 619-630. Thavasi, R., Jayalakshmi, S., & Banat, I. M. (2011). Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresource technology, 102(3), 3366-3372. Tripathi, V., Gaur, V. K., Thakur, R. S., Patel, D. K., & Manickam, N. (2023). Assessing the half-life and degradation kinetics of aliphatic and aromatic hydrocarbons by bacteria isolated from crude oil contaminated soil. Chemosphere, 337, 139264. Ure, A. M., Quevauviller, P. H., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International journal of environmental analytical chemistry, 51(1-4), 135-151. Uyun, K., Darmayati, Y., & Mustafa, I. (2022). Perlite-immobilized bacterialconsortium enhanced degradation of crude oil-contaminated marine sediment. Journal of Sustainability Science and Management, 17(1), 194-203. Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource technology, 223, 277-286. Varjani, S. J., & Upasani, V. N. (2016). Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresource technology, 221, 510-516. Varjani, S. J., & Upasani, V. N. (2017). A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation, 120, 71-83. Varjani, S. J., and V. K. Srivastava. "Green technology and sustainable development of environment." Renewable Resources Journal 3.1 (2015): 244-49. Viramontes-Ramos, S., Portillo-Ruiz, M. C., Ballinas-Casarrubias, M. D. L., Torres-Muñoz, J. V., Rivera-Chavira, B. E., & Nevárez-Moorillón, G. V. (2010). Selection of biosurfactan/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil. Brazilian Journal of Microbiology, 41, 668-675. Wang, D., Lin, J., Lin, J., Wang, W., & Li, S. (2019). Biodegradation of petroleum hydrocarbons by Bacillus subtilis BL-27, a strain with weak hydrophobicity. Molecules, 24(17), 3021. Xia, M., Liu, Y., Taylor, A. A., Fu, D., Khan, A. R., & Terry, N. (2017). Crude oil depletion by bacterial strains isolated from a petroleum hydrocarbon impacted solid waste management site in California. International Biodeterioration & Biodegradation, 123, 70-77. Yan, Z., Jiang, H., Cai, H., Zhou, Y., & Krumholz, L. R. (2015). Complex interactions between the macrophyte Acorus calamus and microbial fuel cells during pyrene and benzo [a] pyrene degradation in sediments. Scientific reports, 5(1), 10709. Zhang, Z., Sun, J., Gong, X., Yang, Z., Wang, C., & Wang, H. (2022). Anaerobic phenanthrene biodegradation by a new salt-tolerant/halophilic and nitrate-reducing Virgibacillus halodenitrificans strain PheN4 and metabolic processes exploration. Journal of Hazardous Materials, 435, 129085. Ziwei, B., Hanning, W., Lusha, W., Zena, Z., & Yifei, W. (2023). Isolation and characterization of viscosity-reducing and biosurfactant-producing bacteria in low-permeability reservoir. International Journal of Energy Research, 2023.
| ||
آمار تعداد مشاهده مقاله: 74 تعداد دریافت فایل اصل مقاله: 47 |