تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,084,841 |
تعداد دریافت فایل اصل مقاله | 97,188,968 |
بهبود دقت برآورد دبی با تلفیق روشهای هیدرولوژیکی و دادههای سنجشازدور با تاکید بر نقش بافت خاک و کاربری اراضی در حوضه های فاقد آمار هیدرومتری | ||
اکوهیدرولوژی | ||
مقاله 3، دوره 11، شماره 3، مهر 1403، صفحه 337-354 اصل مقاله (1.79 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2024.383293.1842 | ||
نویسندگان | ||
حافظ میرزاپور1؛ علی حقی زاده* 2؛ مهدی سلیمانی مطلق3 | ||
1دانشجوی دکتری مدیریت حوزههای آبخیز، دانشکده منابع طبیعی، دانشگاه لرستان، خرمآباد، ایران | ||
2دانشیار گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، خرمآباد، ایران | ||
3استادیار گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، خرمآباد، ایران | ||
چکیده | ||
مدیریت مؤثر منابع آب در مناطق با دادههای هیدرومتری محدود، نیازمند استفاده از روشهای نوین و ترکیبی است که به بررسی دقیقتر دینامیکهای هیدرولوژیکی بپردازند. این پژوهش به بررسی و تحلیل برآورد دبی زیرحوزههای دز در استان لرستان میپردازد. ابتدا با اتکا به دادههای ماهوارهای سنتینل 1 و 2 و بهرهگیری از شاخصهای SRCI و BI نقشهی بافتهای خاک، کاربری اراضی و نقشه شماره منحنی (CN) استخراج گردید. در ادامه، با تکیه بر دادههای بارش و دبی از سال 1371 تا 1402 و تحلیل آماری، دوره بازگشت بارش و دبی زیرحوزههای موردمطالعه با بهرهگیری از نرمافزار ایزی فیت محاسبه گردید. دبی هر زیر حوزه با استفاده از روش SCS و رگرسیون چندمتغیره تخمین زده شد. نتایج نشان داد رگرسیون چندمتغیره باتوجهبه مقادیر آماره دوربین واتسون (1/74) آمارههای ضریب تعیین 0/768 میانگین مربعات خطا 17/88و نش ساتکلیف 0/758 در دوره بازگشت 2 ساله مناسبترین دوره بازگشت جهت تخمین دبی ایستگاههای فاقد آمار در زیرحوزههای دز در استان لرستان میباشد. بهطورکلی، این پژوهش شیوههای کارآمدی را برای مدیریت منابع آبی و بهینهسازی هیدرولوژیکی در استان لرستان ارائه میدهد و توصیه میشود جهت صرفه جویی در هزینه و زمان از رگرسیون چندمتغیره برای تخمین دبی در زیرحوزههای آبخیز فاقد آمار بهرهبرداری گردد. | ||
کلیدواژهها | ||
گوگل ارث انجین؛ بافت خاک؛ SRCI؛ شاخص روشنایی BI؛ سنتینل | ||
مراجع | ||
Abed, M. S., Kadhim, F. J., Almusawi, J. K., Imran, H., Bernardo, L. F. A., & Henedy, S. N. (2023). Utilizing multivariate adaptive regression splines (MARS) for precise estimation of soil compaction parameters. Applied Sciences, 13(21), 11634. Alizadeh A. (2024). Principles of applied hydrology. Publications of Imam Reza University; 941 p. (in Persian) Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., ... & Brisco, B. (2020). Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326-5350. Asfaw, E., Suryabhagavan, K. V., & Argaw, M. (2018). Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 17(3), 250-258. Aziz, M. T., Islam, M. R., Kader, Z., Imran, H. M., Miah, M., Islam, M. R., & Salehin, M. (2023). Runoff assessment in the Padma River Basin, Bangladesh: a GIS and RS platform in the SCS-CN approach. Journal of Sedimentary Environments, 8(2), 247-260. Baghel, S., Kothari, M., Tripathi, M. P., Das, S., Kumar, A., & Kuriqi, A. (2023). Water conservation appraisal using surface runoff estimated by an integrated SCS-CN and MCDA-AHP technique. Journal of Earth System Science, 132(3), 127. Berndt, C., Chi, W. C., Jegen, M., Lebas, E., Crutchley, G., Muff, S., & Feseker, T. (2019). Tectonic controls on gas hydrate distribution off SW Taiwan. Journal of Geophysical Research: Solid Earth, 124(2), 1164-1184. Bousbih, S., Zribi, M., Pelletier, C., Gorrab, A., Lili-Chabaane, Z., Baghdadi, N., Ben Aissa, N., & Mougenot, B. (2019). Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sensing, 11(13), 1520. Caloz, R., Abednego, B., & Collet, C. (1988, April). The normalisation of a soil brightness index for the study of changes in soil conditions. In Spectral Signatures of Objects in Remote Sensing (Vol. 287, p. 363). Danoedoro, P., & Zukhrufiyati, A. (2015, May). Integrating spectral indices and geostatistics based on Landsat-8 imagery for surface clay content mapping in Gunung Kidul area, Yogyakarta, Indonesia. In Proceeding of the 36th Asian Conference on Remote Sensing, Yogyakarta. https://www. researchgate. net/publication/302580476. Eisfelder, C., Boemke, B., Gessner, U., Sogno, P., Alemu, G., Hailu, R., Mesmer, C., & Huth, J. (2024). Cropland and Crop Type Classification with Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine for Agricultural Monitoring in Ethiopia. Remote Sensing, 16(5), 866. Esfandyari Darabad, F., Pourganji, Z., Mostafazadeh, R., & Aghaie, M. (2022). Comparison of Effective Rainfall Conversion Methods to Surface Runoff in Flood Hydrographic Simulation of Nanehkaran Watershed, Ardabil Province. Hydrogeomorphology, 9(32), 86-63. (in Persian) Faqe Ibrahim, G. R., Rasul, A., & Abdullah, H. (2023). Improving crop classification accuracy with integrated Sentinel-1 and Sentinel-2 data: a case study of barley and wheat. Journal of Geovisualization and Spatial Analysis, 7(2), 22. Gharakhani. M., Aghamohammadi, H., & Vahidnia, M.H. (2022). Flood hazard zonation using spatial hydrologic analysis in GIS and interpretation of satellite images: A case study on Aharchay catchment. J. Sus. Dev. & Env, 3(2):67-86. (in Persian) GIS Geography. Sentinel-2 Bands Combinations. Available from: https://gisgeography.com/sentinel-2-bands-combinations/ Haghighizadeh, A,, Mohammadi, M., & Noori, F. (2015). Simulation of rainfall-runoff process using artificial neural network, adaptive neuro-fuzzy system, and multivariate regression (Case study: Khoramabad watershed). Ecohydrology, 2(2):233-243. (in Persian) Hagras, A. (2023). Runoff modeling using SCS-CN and GIS approach in the Tayiba Valley Basin, Abu Zenima area, South-west Sinai, Egypt. Modeling Earth Systems and Environment, 9(4), 3883-3895. Hoseini, Y. (2020). Comparison of uniform and SCS unit hydrograph methods to estimate maximum flood discharge of Amughin Basin. Hydrogeomorphology, 6(21), 87-107. (in Persian) Kariuki, P. C., Woldai, T., & Van Der Meer, F. (2004). Effectiveness of spectroscopy in identification of swelling indicator clay minerals. International Journal of Remote Sensing, 25(2), 455-469. Khan, N. M., Rastoskuev, V. V., Sato, Y., & Shiozawa, S. (2005). Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77(1-3), 96-109. Khedmati, H., Manshouri, M. O. H. A. M. M. A. D., Heydarizadeh, M. A. J. I. D., & Sedghi, H. O. S. S. E. I. N. (2010). Zonation and estimation of flood discharge in unguaged sites located in south-east basins of Iran using a combination of flood index and multi-variable regression methods (Sistan and Baluchistan, Kerman, Yazd and Hormozgan provinces). Water and Soil, 24(3). (in Persian) Kim, S., Kim, S., Green, C. H., & Jeong, J. (2022). Multivariate polynomial regression modeling of total dissolved-solids in rangeland stormwater runoff in the Colorado River Basin. Environmental Modelling & Software, 157, 105523. KN, J. H., Channavar, V. R., Malappanavar, N., Radder, V. S., Chandrakar, T., & Basavaraj, D. B. (2024). Spatial Analysis of Surface Runoff Using SCS-CN Technique Integrated with GIS and Remote Sensing. International Journal of Environment and Climate Change, 14(5), 441-454. Mohammadzadeh, A., & Massoudzadegan, S. (2017). Forecasting Daily Volatility and Value at Risk with High Frequency Data. Development and Transformation Management Quarterly, 8(27):63-74. (in Persian) Moharrami, M., Attarchi, S., Gloaguen, R., & Alavipanah, S. K. (2024). Integration of Sentinel-1 and Sentinel-2 Data for Ground Truth Sample Migration for Multi-Temporal Land Cover Mapping. Remote Sensing, 16(9), 1566. Mullissa, A., Saatchi, S., Dalagnol, R., Erickson, T., Provost, N., Osborn, F., ... & Melling, D. (2024). LUCA: A Sentinel-1 SAR-Based Global Forest Land Use Change Alert. Remote Sensing, 16(12), 2151. Nasiry, M. K., Said, S., & Ansari, S. A. (2023). Analysis of surface runoff and sediment yield under simulated rainfall. Modeling Earth Systems and Environment, 9(1), 157-173. Noor Mohammadi, P., Haghighizadeh, A., Tahmasbi Poor, N., & Zeinivand, H. (2016). Identifying locations with potential for rainwater harvesting in the Sarab Seyed Ali watershed using two methods: NRCS-CN and GIS-based decision support system (DSS). Ecohydrology, 3(2):279-291. (in Persian) Raj, R., Kumar, R., Aishwarya, M., Aswini, M., & Cheraku, S. (2024). An artificial neural network and SCS–CN-based model for runoff estimation: a case study of the Peddavagu watershed. Water Practice & Technology, 19(7), 2734-2743. Rasti, S., Mahdavifardnh, M., Shaykh Ghaderi, H., Nasiri, A., & Taktaz, N. Z. (2022). Improving Classification accuracy by combining multi-season images of Sentinel 1 and 2 in order to prepare a land use map in the cloud space of Google Earth Engine (Case study: Guilan province). Geography and Human Relationships, 5(3), 357-373. (in Persian) Rutledge, D. N., & Barros, A. S. (2002). Durbin–Watson statistic as a morphological estimator of information content. Analytica Chimica Acta, 454(2), 277-295. Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore geology reviews, 14(3-4), 157-183. Salas, J. D. (1993). Analysis and modelling of hydrological time series. Handbook of hydrology, 19. Sepahvand, T., Soleimani-Motlagh, M., Zeinivand, H., & Mirzaei Mosivand, A. (2023). Estimating Flood through the Fractal Theory-Based Precipitation Estimation and the CN Extracted from Sentinel 2 in HEC-HMS Model: A Case Study of Thireh Watershed in Borujerd-Dorud Region. Desert Ecosystem Engineering, 12(38), 87-103. (in Persian) Setayesh, M. H., & Namazi, N. R. (2015). Investigating the Relationship between Intangible Assets, Profitability and Value of Firms Listed in Tehran Stock Exchange. Accounting and Auditing Research, 7(26), 4-27. (in Persian) Soleimani, K,, Shakarian, F., Abdali, S., & Saberi A. (2021). Prioritization of flood risk potential in the Talaar watershed using GIS. Ecohydrology, 8(3):749-762. (in Persian) Stenberg, B., Rossel, R. A. V., Mouazen, A. M., & Wetterlind, J. (2010). Visible and near infrared spectroscopy in soil science. Advances in agronomy, 107, 163-215. Tali-Khoshk, S., Mohseni Saravi, M., Vatakhah, M., & Khalighi-Sigarodi, S. (2015). Comparison of Neuro-fuzzy and SCS methods in sub-watersheds prioritization for watershed measures (Case study: Taleghan watershed). Journal of Range and Watershed Managment, 68(2), 213-225. doi: 10.22059/jrwm.2015.54922. (in Persian) Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS journal of photogrammetry and remote sensing, 164, 152-170. Teluguntla, P., Thenkabail, P. S., Oliphant, A., Xiong, J., Gumma, M. K., Congalton, R. G., Yadav, K., & Huete, A. (2018). A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS journal of photogrammetry and remote sensing, 144, 325-340. Tosan, M., & Beyranvand, Z. (2023). The role of flood analysis in different return periods using empirical relationships for small watersheds in the stability of aquifers. Journal of Auifer and Qanat, 4(1), 169-180. (in Persian) Vinutha, T. Y., Rakesh, C. J., Lokanath, S., & Kumar, A. K. (2024). Surface Runoff Estimation Using SCS-CN Method for Kurumballi Sub-watershed in Shivamogga District, Karnataka, India. Nature Environment & Pollution Technology, 23(2). Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., ... & Davies, P. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555-561. Yazdi-Feyzabadi, V., Bahrampour, M., Rashidian, A., Haghdoost, A. A., Akbari Javar, M., & Mehrolhassani, M. H. (2018). Prevalence and intensity of catastrophic health care expenditures in Iran from 2008 to 2015: a study on Iranian household income and expenditure survey. International journal for equity in health, 17, 1-13. Yoothong, K., Moncharoen, L., Vijarnson, P., & Eswaran, H. (1997). Clay mineralogy of Thai soils. Applied Clay Science, 11(5-6), 357-371. Zema, D. A., Parhizkar, M., Plaza-Alvarez, P. A., Xu, X., & Lucas-Borja, M. E. (2024). Using random forest and multiple-regression models to predict changes in surface runoff and soil erosion after prescribed fire. Modeling Earth Systems and Environment, 10(1), 1215-1228. Zhao, Q., Yu, L., Li, X., Peng, D., Zhang, Y., & Gong, P. (2021). Progress and trends in the application of Google Earth and Google Earth Engine. Remote Sensing, 13(18), 3778. | ||
آمار تعداد مشاهده مقاله: 87 تعداد دریافت فایل اصل مقاله: 104 |