
تعداد نشریات | 163 |
تعداد شمارهها | 6,826 |
تعداد مقالات | 73,630 |
تعداد مشاهده مقاله | 135,028,990 |
تعداد دریافت فایل اصل مقاله | 105,336,777 |
Physicochemical Parameters Affecting the In-vitro Toxins Production by Characterized Antibiotic-resistant Clostridium Perfringens Toxinotype B Isolates | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 10، دوره 19، شماره 3، مهر 2025، صفحه 503-514 اصل مقاله (1.42 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.3.1005561 | ||
نویسندگان | ||
Madeeha Tariq1؛ Aftab Ahmad Anjum* 1؛ Wajeeha Tariq2؛ Tehreem Ali1؛ Rabia Manzoor1 | ||
1Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan. | ||
2Institute of Biochemistry and Biotechnology, Faculty of Bioscience, University of Veterinary and Animal Sciences, Lahore, Pakistan. | ||
چکیده | ||
Background: Alpha, beta and epsilon toxins of Clostridium perfringens toxintype B are the major potent toxins involved in enterotoxemia. To combat this condition, proper vaccination of animals is required with an effective vaccine. Objectives: This research aimed to characterize the resistant C. perfringens type B isolates for in-vitro toxin production potential under the influence of various physicochemical parameters. Methods: C. perfringens isolates were characterized based on biochemical tests, toxinotyping, and 16S rRNA typing. The indigenously characterized C. perfringens toxinotype B isolates (n=6) were subjected to antibiotic susceptibility profiling through the Kirby-Bauer method. The resistant C. perfringens type B isolates were subjected to toxin production optimization under physicochemical parameters (physical: Temperature, pH and time of incubation; chemical: Glucose, vitamin-mineral mixture, tween 80 and sodium salts at various concentration). Results: The C. perfringens isolates were identified as toxinotype B. Isolates MW551887.1 and MW332247.1 produced higher hemolytic and cytotoxic units of toxins at a 0.2% glucose concentration in the broth after 24 hours at 37 ºC, respectively. Alpha toxin, Beta toxin, Clostridium perfringens toxinotype B, Epsilon toxin, Glucose: To combat disease, controlling antibiotic resistance and ensuring proper vaccination of animals is crucial. These C. perfringens isolates may have commercial applications for toxoid vaccine production after further. Conclusion: To combat disease, control of antibiotic resistance and proper vaccination of animals is crucial. These C. perfringens isolates may have commercial application for toxoid vaccine production after further characterization and molecular testing of toxins. | ||
کلیدواژهها | ||
Alpha toxin؛ Beta toxin؛ Clostridium perfringens toxinotype B؛ Epsilon toxin؛ Glucose | ||
اصل مقاله | ||
Introduction
Acknowledgments
Alves, G. G., Gonçalves, L. A., Assis, R. A., Oliveira Júnior, C. A., Silva, R. O. S., & Heneine, L. G. D., et al. (2021). Production and purification of Clostridium perfringens type D epsilon toxin and IgY antitoxin. Anaerobe, 69, [DOI:10.1016/j.anaerobe.2021.102354] [PMID] Alimolaei, M., & Shamsaddini Bafti, M. (2023). Isolation and Molecular Characterization of Clostridium perfringens Toxinotypes F & G in Diarrhoeic Sheep (Ovis aries) Flocks in Southeast of Iran. Archives of Razi Institute, 78(3), 1159–1168. [DOI:10.22092/ARI.2023.360450.2582] [PMID] Almutary, A., & Sanderson, B. J. (2016). The MTT and crystal violet assays: Potential confounders in nanoparticle toxicity testing. International Journal of Toxicology, 35(4), 454-462. [DOI:10.1177/1091581816648906] [PMID] Anju, K., Karthik, K., Divya, V., Mala Priyadharshini, M. L., Sharma, R. K., & Manoharan, S. (2021). Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. Anaerobe, 67, [DOI:10.1016/j.anaerobe.2020.102298] [PMID] Araghi, A., Taghizadeh, M., Hosseini Doust, S. R., Paradise, A., & Azimi Dezfouli, S. M. (2023). Evaluation of Immunogenicity of Clostridium perfringens Type B Toxoid and Inactivated FMD (O) Virus with Adjuvant (ISA70-MF59). Archives of Razi Institute, 78(3), 907–913. [PMID] Asghar, S., Arif, M., Nawaz, M., Muhammad, K., Ali, M. A., Ahmad, M. D., & Iqbal, S., et al. (2016). Selection, characterization and evaluation of potential probiotic Lactobacillus spp. isolated from poultry droppings. Beneficial Microbes, 7(1), 35-44. [DOI:10.3920/BM2015.0020] [PMID] Atmanto, Y. K. A. A., Paramita, K., & Handayani, I. (2022). Culture media. International Research Journal of Modernization in Engineering Technology and Science, 4(4), 2213-2225. [Link] Bhunia, A. K. (2018). Clostridium botulinum, Clostridium perfringens, Clostridium difficile. In: Foodborne Microbial Pathogens. Food Science Text Series. New York, NY: Springer, [DOI:10.1007/978-1-4939-7349-1_12] Clarridge J. E., 3rd. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 17(4), 840–862. [DOI:10.1128/CMR.17.4.840-862.2004] [PMID] Clinical Laboratory Standards Institute (CLSI). (2018). Interpretive criteria for identification of bacteria and fungi by DNA target sequencing. MM18-A2 approved guideline. Wayne, PA: CLSI. [Link] Fernandez-Miyakawa, M. E., Fisher, D. J., Poon, R., Sayeed, S., Adams, , & Rood, J. I., et al. (2007). Both epsilon-toxin and beta-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model. Infection and Immunity, 75(3), 1443–1452.[DOI:10.1128/IAI.01672-06] [PMID] Fernandez-Miyakawa, M. E., Marcellino, R., & Uzal, F. A. (2007). Clostridium perfringens type A toxin production in 3 commonly used culture media. Journal of Veterinary Diagnostic Investigation: Official Publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 19(2), 184–186. [DOI:10.1177/104063870701900208] [PMID] Fernandez Miyakawa, M. E., Zabal, O., & Silberstein, C. (2011). Clostridium perfringens epsilon toxin is cytotoxic for human renal tubular epithelial ce Human & Experimental Toxicology, 30(4), 275–282. [DOI:10.1177/0960327110371700] [PMID] Forti, Forti, K., Ferroni, L., Pellegrini, M., Cruciani, D., De Giuseppe, A., & Crotti, S., et al. (2020). Molecular Characterization of Clostridium perfringens Strains Isolated in Italy. Toxins, 12(10), 650. [DOI:10.3390/toxins12100650] [PMID] Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S., & Woese, C. R. (1977). Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proceedings of the National Academy of Sciences of the United States of America, 74(10), 4537–4541. [DOI:10.1073/pnas.74.10.4537] [PMID] Guo, Y., Dai, L., Xin, B., Tao, F., Tang, H., & Shen, Y., et al. (2017). 1, 3-Propanediol production by a newly isolated strain, Clostridium perfringens GYL. Bioresource Technology, 233, 406–412. [DOI:10.1016/j.biortech.2017.02.116] [PMID] Hu, Y., Zhang, W., Bao, J., Wu, Y., Yan, M., & Xiao, Y., et al. (2016). A chimeric protein composed of the binding domains of Clostridium perfringens phospholipase C and Trueperella pyogenes pyolysin induces partial immune protection in a mouse model. Research in Veterinary Sciences, 107, 106-115. [DOI:10.1016/j.rvsc.2016.04.011] [PMID] Hussain, K., Muhammad, I.J.A.Z., Durrani, A.Z., Anjum, A.A., Farooqi, S.H., Aqib, A.I., & Ahmad, A.S. (2017). Molecular Typing of Clostridium perfringens Toxins (α, β, ε, ι) and Type "A" Multidrug Resistance Profile in Diarrheic Goats in Pakistan. Kafkas Universitesi Veteriner Fakültesi Dergisi, 24(2), 251-255. [Link] Jin, F., Matsushita, O., Katayama, S., Jin, S., Matsushita, C., Minami, J., & Okabe, A. (1996). Purification, characterization, and primary structure of Clostridium perfringens lambda-toxin, a thermolysin-like metalloprotease. Infection and immunity, 64(1), 230–237. [DOI:10.1128/iai.64.1.230-237.1996] [PMID] Khan, M. A., Bahadar, S., Ullah, N., Ullah, S., Shakeeb, U., & Khan, A. Z., et al. (2019). Distribution and antimicrobial resistance patterns of Clostridium perfringens isolated from vaccinated and unvaccinated goats. Small Ruminant Research, 173, 70-73. [DOI:10.1016/j.smallrumres.2019.02.011] Kulshrestha, S. B. (1973). Effect of period of incubation and pH on the production of beta and epsilon toxins by Clostridum welchii types B and C. Indian Journal of Animal Sciences, 43(11), 987-990. [Link] Mohiuddin, M., Iqbal, Z., Siddique, A., Liao, S., Salamat, M. K. F., & Qi, N., et al. (2020). Prevalence, genotypic and phenotypic characterization and antibiotic resistance profile of Clostridium perfringens type A and D isolated from feces of sheep (Ovis aries) and goats (Capra hircus) in Punjab, Paki Toxins, 12(10), 657. [DOI:10.3390/toxins12100657] [PMID] Munday, J. S., Bentall, H., Aberdein, D., Navarro, M., Uzal, F. A., & Brown, S. (2020). Death of a neonatal lamb due to Clostridium perfringens type B in New Zealand. New Zealand Veterinary Journal, 68(4), 242–246. [DOI:10.1080/00480169.2019.1706660] [PMID] Nagahama, M., Morimitsu, S., Kihara, A., Akita, M., Setsu, K., & Sakurai, J. (2003). Involvement of tachykinin receptors in Clostridium perfringens beta-toxin-induced plasma extravasation. British Journal of Pharmacology, 138(1), 23–30.[DOI:10.1038/sj.bjp.0705022] [PMID] Nagahama, M., Takehara, M., & Rood, J. I. (2019). Histotoxic clostridial infections. Microbiology Spectrum, 7(4), 1-17. [DOI:10.1128/microbiolspec.GPP3-0024-2018] [PMID] Navarro, M. A., McClane, B. A., & Uzal, F. A. (2018). Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins. Toxins, 10(5), 212. [DOI:10.3390/toxins10050212] [PMID] Noruzy Moghadam, H., Hemmaty, M., Farzin, H. R., Jamshidian Mojaver, M., Jandaghi, H., & Majidi, B. (2023). Use of esienia fetida worms to produce peptone for clostridium perfringens vaccine production. Archives of Razi Institute, 78(3), 1041–1047. [PMID] Pawaiya, R. S., Gururaj, K., Gangwar, N. K., Singh, D. D., Kumar, R., & Kumar, A. (2020). The Challenges of Diagnosis and Control of Enterotoxaemia Caused by Clostridium perfringens in Small Ruminants. Advances in Microbiology, 10(5), 238-273. [DOI:10.4236/aim.2020.105019] Pulotov, F. K., Nazarova, O. D., Akhmadov, N. A., & Karimzoda, A. I. (2021). Development of polyvalent toxoid Clostridium perfringens against anaerobic enterotoxaemia in young cattle and small ruminants. E3S Web of Conferences, 282, 1-7. [DOI:10.1051/e3sconf/202128204009] Subramanyam, K. V., Rao, V. P., & Vijayakrishna, S. (2000). Purification of epsilon toxin of Cl. Perfringens type D by deae-cellulose charomatography. Indian Veterinary Journal (India), 78(6), 471-472. [Link] Tariq, M., Anjum, A. A., Sheikh, A. A., Awan, A. R., Ali, M. A., & Sattar, M. M. K., et al. (2021). Preparation and evaluation of alum precipitate and oil adjuvant multivalent vaccines against Clostridium perfringens. Kafkas Universitesi Veteriner Fakültesi Dergisi, 27(4), 475-482. [Link] van Asten, A. J., van der Wiel, C. W., Nikolaou, G., Houwers, D. J., & Gröne, A. (2009). A multiplex PCR for toxin typing of Clostridium perfringens isolates. Veterinary Microbiology, 136(3-4), 411–412. [DOI:10.1016/j.vetmic.2008.11.024] [PMID] Viana Brandi, I., Domenici Mozzer, O., Jorge, E. V., Vieira Passos, F. J., Lopes Passos, F. M., & Cangussu, A. S., et al. (2014). Growth conditions of Clostridium perfringens type B for production of toxins used to obtain veterinary vaccines. Bioprocess and Biosystems Engineering, 37(9), 1737–1742.[DOI:10.1007/s00449-014-1146-0] [PMID] Wang, Y., Miao, Y., Hu, L.P., Kai, W., & Zhu, R. (2020). Immunization of mice against alpha, beta, and epsilon toxins of Clostridium perfringens using recombinant rCpa-bx expressed by Bacillus subtilis. Molecular Immunology, 123, 88-96. [2020.05.006] [PMID] | ||
مراجع | ||
Alves, G. G., Gonçalves, L. A., Assis, R. A., Oliveira Júnior, C. A., Silva, R. O. S., & Heneine, L. G. D., et al. (2021). Production and purification of Clostridium perfringens type D epsilon toxin and IgY antitoxin. Anaerobe, 69, [DOI:10.1016/j.anaerobe.2021.102354] [PMID] Alimolaei, M., & Shamsaddini Bafti, M. (2023). Isolation and Molecular Characterization of Clostridium perfringens Toxinotypes F & G in Diarrhoeic Sheep (Ovis aries) Flocks in Southeast of Iran. Archives of Razi Institute, 78(3), 1159–1168. [DOI:10.22092/ARI.2023.360450.2582] [PMID] Almutary, A., & Sanderson, B. J. (2016). The MTT and crystal violet assays: Potential confounders in nanoparticle toxicity testing. International Journal of Toxicology, 35(4), 454-462. [DOI:10.1177/1091581816648906] [PMID] Anju, K., Karthik, K., Divya, V., Mala Priyadharshini, M. L., Sharma, R. K., & Manoharan, S. (2021). Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. Anaerobe, 67, [DOI:10.1016/j.anaerobe.2020.102298] [PMID] Araghi, A., Taghizadeh, M., Hosseini Doust, S. R., Paradise, A., & Azimi Dezfouli, S. M. (2023). Evaluation of Immunogenicity of Clostridium perfringens Type B Toxoid and Inactivated FMD (O) Virus with Adjuvant (ISA70-MF59). Archives of Razi Institute, 78(3), 907–913. [PMID] Asghar, S., Arif, M., Nawaz, M., Muhammad, K., Ali, M. A., Ahmad, M. D., & Iqbal, S., et al. (2016). Selection, characterization and evaluation of potential probiotic Lactobacillus spp. isolated from poultry droppings. Beneficial Microbes, 7(1), 35-44. [DOI:10.3920/BM2015.0020] [PMID] Atmanto, Y. K. A. A., Paramita, K., & Handayani, I. (2022). Culture media. International Research Journal of Modernization in Engineering Technology and Science, 4(4), 2213-2225. [Link] Bhunia, A. K. (2018). Clostridium botulinum, Clostridium perfringens, Clostridium difficile. In: Foodborne Microbial Pathogens. Food Science Text Series. New York, NY: Springer, [DOI:10.1007/978-1-4939-7349-1_12] Clarridge J. E., 3rd. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 17(4), 840–862. [DOI:10.1128/CMR.17.4.840-862.2004] [PMID] Clinical Laboratory Standards Institute (CLSI). (2018). Interpretive criteria for identification of bacteria and fungi by DNA target sequencing. MM18-A2 approved guideline. Wayne, PA: CLSI. [Link] Fernandez-Miyakawa, M. E., Fisher, D. J., Poon, R., Sayeed, S., Adams, , & Rood, J. I., et al. (2007). Both epsilon-toxin and beta-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model. Infection and Immunity, 75(3), 1443–1452.[DOI:10.1128/IAI.01672-06] [PMID] Fernandez-Miyakawa, M. E., Marcellino, R., & Uzal, F. A. (2007). Clostridium perfringens type A toxin production in 3 commonly used culture media. Journal of Veterinary Diagnostic Investigation: Official Publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 19(2), 184–186. [DOI:10.1177/104063870701900208] [PMID] Fernandez Miyakawa, M. E., Zabal, O., & Silberstein, C. (2011). Clostridium perfringens epsilon toxin is cytotoxic for human renal tubular epithelial ce Human & Experimental Toxicology, 30(4), 275–282. [DOI:10.1177/0960327110371700] [PMID] Forti, Forti, K., Ferroni, L., Pellegrini, M., Cruciani, D., De Giuseppe, A., & Crotti, S., et al. (2020). Molecular Characterization of Clostridium perfringens Strains Isolated in Italy. Toxins, 12(10), 650. [DOI:10.3390/toxins12100650] [PMID] Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S., & Woese, C. R. (1977). Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proceedings of the National Academy of Sciences of the United States of America, 74(10), 4537–4541. [DOI:10.1073/pnas.74.10.4537] [PMID] Guo, Y., Dai, L., Xin, B., Tao, F., Tang, H., & Shen, Y., et al. (2017). 1, 3-Propanediol production by a newly isolated strain, Clostridium perfringens GYL. Bioresource Technology, 233, 406–412. [DOI:10.1016/j.biortech.2017.02.116] [PMID] Hu, Y., Zhang, W., Bao, J., Wu, Y., Yan, M., & Xiao, Y., et al. (2016). A chimeric protein composed of the binding domains of Clostridium perfringens phospholipase C and Trueperella pyogenes pyolysin induces partial immune protection in a mouse model. Research in Veterinary Sciences, 107, 106-115. [DOI:10.1016/j.rvsc.2016.04.011] [PMID] Hussain, K., Muhammad, I.J.A.Z., Durrani, A.Z., Anjum, A.A., Farooqi, S.H., Aqib, A.I., & Ahmad, A.S. (2017). Molecular Typing of Clostridium perfringens Toxins (α, β, ε, ι) and Type "A" Multidrug Resistance Profile in Diarrheic Goats in Pakistan. Kafkas Universitesi Veteriner Fakültesi Dergisi, 24(2), 251-255. [Link] Jin, F., Matsushita, O., Katayama, S., Jin, S., Matsushita, C., Minami, J., & Okabe, A. (1996). Purification, characterization, and primary structure of Clostridium perfringens lambda-toxin, a thermolysin-like metalloprotease. Infection and immunity, 64(1), 230–237. [DOI:10.1128/iai.64.1.230-237.1996] [PMID] Khan, M. A., Bahadar, S., Ullah, N., Ullah, S., Shakeeb, U., & Khan, A. Z., et al. (2019). Distribution and antimicrobial resistance patterns of Clostridium perfringens isolated from vaccinated and unvaccinated goats. Small Ruminant Research, 173, 70-73. [DOI:10.1016/j.smallrumres.2019.02.011] Kulshrestha, S. B. (1973). Effect of period of incubation and pH on the production of beta and epsilon toxins by Clostridum welchii types B and C. Indian Journal of Animal Sciences, 43(11), 987-990. [Link] Mohiuddin, M., Iqbal, Z., Siddique, A., Liao, S., Salamat, M. K. F., & Qi, N., et al. (2020). Prevalence, genotypic and phenotypic characterization and antibiotic resistance profile of Clostridium perfringens type A and D isolated from feces of sheep (Ovis aries) and goats (Capra hircus) in Punjab, Paki Toxins, 12(10), 657. [DOI:10.3390/toxins12100657] [PMID] Munday, J. S., Bentall, H., Aberdein, D., Navarro, M., Uzal, F. A., & Brown, S. (2020). Death of a neonatal lamb due to Clostridium perfringens type B in New Zealand. New Zealand Veterinary Journal, 68(4), 242–246. [DOI:10.1080/00480169.2019.1706660] [PMID] Nagahama, M., Morimitsu, S., Kihara, A., Akita, M., Setsu, K., & Sakurai, J. (2003). Involvement of tachykinin receptors in Clostridium perfringens beta-toxin-induced plasma extravasation. British Journal of Pharmacology, 138(1), 23–30.[DOI:10.1038/sj.bjp.0705022] [PMID] Nagahama, M., Takehara, M., & Rood, J. I. (2019). Histotoxic clostridial infections. Microbiology Spectrum, 7(4), 1-17. [DOI:10.1128/microbiolspec.GPP3-0024-2018] [PMID] Navarro, M. A., McClane, B. A., & Uzal, F. A. (2018). Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins. Toxins, 10(5), 212. [DOI:10.3390/toxins10050212] [PMID] Noruzy Moghadam, H., Hemmaty, M., Farzin, H. R., Jamshidian Mojaver, M., Jandaghi, H., & Majidi, B. (2023). Use of esienia fetida worms to produce peptone for clostridium perfringens vaccine production. Archives of Razi Institute, 78(3), 1041–1047. [PMID] Pawaiya, R. S., Gururaj, K., Gangwar, N. K., Singh, D. D., Kumar, R., & Kumar, A. (2020). The Challenges of Diagnosis and Control of Enterotoxaemia Caused by Clostridium perfringens in Small Ruminants. Advances in Microbiology, 10(5), 238-273. [DOI:10.4236/aim.2020.105019] Pulotov, F. K., Nazarova, O. D., Akhmadov, N. A., & Karimzoda, A. I. (2021). Development of polyvalent toxoid Clostridium perfringens against anaerobic enterotoxaemia in young cattle and small ruminants. E3S Web of Conferences, 282, 1-7. [DOI:10.1051/e3sconf/202128204009] Subramanyam, K. V., Rao, V. P., & Vijayakrishna, S. (2000). Purification of epsilon toxin of Cl. Perfringens type D by deae-cellulose charomatography. Indian Veterinary Journal (India), 78(6), 471-472. [Link] Tariq, M., Anjum, A. A., Sheikh, A. A., Awan, A. R., Ali, M. A., & Sattar, M. M. K., et al. (2021). Preparation and evaluation of alum precipitate and oil adjuvant multivalent vaccines against Clostridium perfringens. Kafkas Universitesi Veteriner Fakültesi Dergisi, 27(4), 475-482. [Link] van Asten, A. J., van der Wiel, C. W., Nikolaou, G., Houwers, D. J., & Gröne, A. (2009). A multiplex PCR for toxin typing of Clostridium perfringens isolates. Veterinary Microbiology, 136(3-4), 411–412. [DOI:10.1016/j.vetmic.2008.11.024] [PMID] Viana Brandi, I., Domenici Mozzer, O., Jorge, E. V., Vieira Passos, F. J., Lopes Passos, F. M., & Cangussu, A. S., et al. (2014). Growth conditions of Clostridium perfringens type B for production of toxins used to obtain veterinary vaccines. Bioprocess and Biosystems Engineering, 37(9), 1737–1742.[DOI:10.1007/s00449-014-1146-0] [PMID] Wang, Y., Miao, Y., Hu, L.P., Kai, W., & Zhu, R. (2020). Immunization of mice against alpha, beta, and epsilon toxins of Clostridium perfringens using recombinant rCpa-bx expressed by Bacillus subtilis. Molecular Immunology, 123, 88-96. [2020.05.006] [PMID]
| ||
آمار تعداد مشاهده مقاله: 325 تعداد دریافت فایل اصل مقاله: 235 |