تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,506 |
تعداد مشاهده مقاله | 124,126,293 |
تعداد دریافت فایل اصل مقاله | 97,234,369 |
ارزیابی تغییرات مکانی و زمانی کیفیت منابع آب زیرزمینی در حوزه آبریز دشت قزوین | ||
نشریه علمی - پژوهشی مرتع و آبخیزداری | ||
دوره 77، شماره 3، آبان 1403، صفحه 353-369 اصل مقاله (1.22 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jrwm.2024.370962.1744 | ||
نویسندگان | ||
لیلا داوودی معماراطاقور1؛ ابراهیم فتائی* 1؛ مهدی تاج آبادی2؛ بابک نعیمی3 | ||
1گروه محیط زیست، دانشکده علوم پایه، دانشگاه آزاد اسلامی، واحد اردبیل، اردبیل، ایران | ||
2گروه علوم زمین، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران | ||
3گروه زیست شناسی، دانشگاه اترخت، اترخت، هلند | ||
چکیده | ||
ارزیابی کیفیت منابع آب یکی از موارد با اهمیت برای بهبود مدیریت آنها میباشد. با توجه به اهمیت منابع اب زیرزمینی در دشت قزوین، و به منظور اگاهی بیشتر از وضعیت این منابع، در این مطالعه به بررسی کیفیت آب زیرزمینی برای مصارف شرب و کشاورزی پرداخته شده است. به این منظور با استفاده از پارامترهای هیدروژئوشیمیایی، دو شاخص کیفیت آب آشامیدنی و آبیاری جهت بررسی و مطالعه کیفیت آب زیرزمینی در سالهای 1391، 1395 و 1399انتخاب گردیدند. بر اساس نتایج، نقشههای شاخصهای کیفیت آب آشامیدنی و آبیاری کلاسبندی شدند و درصد مساحت هر کلاس و مقدار میانگین آنها در کاربری اراضیهای مختلف با استفاده از نرم افزار ArcMap 10.8.2 به دست آمد، تا اثر متقابل کاربری اراضی بر روی کیفیت آب زیرزمینی در نظر گرفته شود. نتایج نشان داد میانگین شاخص کیفیت آب آشامیدنی در سالهای 1391، 1395 و 1399 به ترتیب 02/135، 30/128 و 38/127 به دست آمد که بهبود کیفیت آب شرب را نشان میدهد. در حالی که میانگین شاخص کیفیت آب آبیاری در این سالها به ترتیب 21/62، 51/63 و 39/63 حاصل شد. کیفیت آب زیرزمینی برای مصارف شرب و کشاورزی در بخشهای شمالی منطقه بهتر از بخشهای جنوبی بود، درحالی که در بخشهای مرکزی و شرقی دشت که شامل اراضی بایر و رها شده است، برای مصرف آبیاری دارای محدودیت زیاد یا شدید میباشند که با مرور زمان محدودیت آب برای آبیاری بیشتر شده است. نتایج مشخص نمود که مساحت اراضی دارای آب زیرزمینی با کیفیت مناسب برای مصرف شرب، در حال کاهش است و در طول دوره مورد مطالعه از مساحت کلاس خوب کاسته شده و بر میزان مساحت کلاس ضعیف افزوده شده است. | ||
کلیدواژهها | ||
دشت قزوین؛ شاخص کیفیت آب؛ کیفیت آب زیرزمینی؛ مدیریت منابع آب | ||
مراجع | ||
Abbasnia, A., Yousefi, N., Mahvi, A. H., Nabizadeh, R., Radfard, M., Yousefi, M., & Alimohammadi, M. (2019). Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Human and Ecological Risk Assessment: An International Journal, 25(4), 988-1005. Abdalla, F., Moubark, K., & Abdelkareem, M. (2020). Groundwater potential mapping using GIS, linear weighted combination techniques and geochemical processes identification, west of the Qena area, Upper Egypt. Journal of Taibah University for Science, 14(1), 1350-1362. Adimalla, N. (2019). Groundwater quality for drinking and irrigation purposes and potential health risks assessment: a case study from semi-arid region of South India. Exposure and health, 11(2), 109-123. Al-Karablieh, E. K., & Al-Momani, F. A. (2017). Water resources management for sustainable agriculture in Jordan. Journal of soil and water conservation, 72(2), 115-121. Amalraj, A., & Pius, A. (2018). Assessment of groundwater quality for drinking and agricultural purposes of a few selected areas in Tamil Nadu South India: a GIS-based study. Sustainable Water Resources Management, 4, 1-21. Amiri, V., Rezaei, M., & Sohrabi, N. (2014). Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat, Iran. Environmental Earth Sciences, 72, 3479-3490. Asadi, E., Isazadeh, M., Samadianfard, S., Ramli, M. F., Mosavi, A., Nabipour, N., Shamshirband, S., Hajnal, E. & Chau, K. W. (2020). Groundwater quality assessment for sustainable drinking and irrigation. Sustainability, 12(1), 177. Azhari, H. E., Cherif, E. K., Sarti, O., Azzirgue, E. M., Dakak, H., Yachou, H., Esteves da Silva, J.C. and Salmoun, F., & Salmoun, F. (2022). Assessment of Surface Water Quality Using the Water Quality Index (IWQ), Multivariate Statistical Analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water, 15(1), 130. Azimi, S., Azhdary Moghaddam, M., & Hashemi Monfared, S. A. (2018). Spatial assessment of the potential of groundwater quality using fuzzy AHP in GIS. Arabian Journal of Geosciences, 11, 1-22. Banda, T. D., & Kumarasamy, M. (2020). Application of multivariate statistical analysis in the development of a surrogate water quality index (WQI) for South African watersheds. Water, 12(6), 1584. Bui, D. T., Khosravi, K., Karimi, M., Busico, G., Khozani, Z. S., Nguyen, H., Mastrocicco, M., Tedesco, D., Cuoco, E. & Kazakis, N. (2020). Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm. Science of the Total Environment, 715, 136836. Dehghan Rahimabadi, P., Masoudi, R., Heydari Alamdarloo, E., Khosravi, H., & Azarnivand, H. (2023). Assessment of Groundwater Quality and its Suitability for Irrigation Purpose using Hydrogeochemical Properties. Environmental Resources Research, 10(2), 221-236. Gaffoor, Z., Gritzman, A., Pietersen, K., Jovanovic, N., Bagula, A., & Kanyerere, T. (2022). An autoregressive machine learning approach to forecast high-resolution groundwater-level anomalies in the Ramotswa/North West/Gauteng dolomite aquifers of Southern Africa. Hydrogeology Journal, 30(2), 575-600. Eslaminezhad, S. A., Eftekhari, M., Akbari, M., Bayat, H., & Barghi, W. (2022). Using Boosted Regression Tree, Logistic Model Tree, and Random Forest Algorithms to Evaluate the Groundwater Potential. Watershed Management Research Journal, 35(3), 44-59. (In Persian) Fakhar, M. S., & Nazari, B. (2022). Evaluation and validation of salinity monitoring indices in the Qazvin plain. Water and Soil Management and Modelling, 2(3), 40-51. (In Persian) He, C., Wang, T., Zhao, Z., Hao, Y., Yeh, T. C. J., & Zhan, H. (2017). One-dimensional analytical solution for hydraulic head and numerical solution for solute transport through a horizontal fracture for submarine groundwater discharge. Journal of contaminant hydrology, 206, 1-9. Hussein, E. E., Derdour, A., Zerouali, B., Almaliki, A., Wong, Y. J., Ballesta-de los Santos, M., Minh Ngoc, P., Hashim, M.A., & Elbeltagi, A. (2024). Groundwater Quality Assessment and Irrigation Water Quality Index Prediction Using Machine Learning Algorithms. Water, 16(2), 264. Ibrahim, H., Yaseen, Z. M., Scholz, M., Ali, M., Gad, M., Elsayed, S., Khadr, M., Hussein, H., Ibrahim, H.H., Eid, M.H., & Khalifa, M. M. (2023). Evaluation and prediction of groundwater quality for irrigation using an integrated water quality index, machine learning models and GIS approaches: A representative case study. Water, 15(4), 694. Isazade, V., Qasimi, A. B., Toomanian, A., & Isazade, E. (2023). The Effect of Drought Phenomenon on the Surface of Groundwater Aquifer in Qazvin Plain in Iran. Journal of Applied Science and Technology Trends, 4(2), 80-85. Jha, M. K., Shekhar, A., & Jenifer, M. A. (2020). Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. Water Research, 179, 115867. Keesari, T., Sinha, U. K., Kamaraj, P., & Sharma, D. A. (2019). Groundwater quality in a semi-arid region of India: Suitability for drinking, agriculture and fluoride exposure risk. Journal of Earth System Science, 128, 1-14. Kenda, K., Peternelj, J., Mellios, N., Kofinas, D., Čerin, M., & Rožanec, J. (2020). Usage of statistical modeling techniques in surface and groundwater level prediction. Journal of Water Supply: Research and Technology-AQUA, 69(3), 248-265. Lwimbo, Z. D., Komakech, H. C., & Muzuka, A. N. (2019). Impacts of emerging agricultural practices on groundwater quality in Kahe catchment, Tanzania. Water, 11(11), 2263. Panahi fard, M., Mahvi, A. H., Asgari, A., Nazemi, S., & Moradnia, M. (2017). A Survey on drinking water quality in qazvin in 2015. Journal of Rafsanjan University of Medical Sciences, 16(1), 3-16. Masoudi, R., Mousavi, S. R., Dehghan Rahimabadi, P., Panahi, M., & Rahmani, A. (2023). Assessing data mining algorithms to predict the quality of groundwater resources for determining irrigation hazard. Environmental Monitoring and Assessment, 195(2), 319. Meireles, A. C. M., Andrade, E. M. D., Chaves, L. C. G., Frischkorn, H., & Crisostomo, L. A. (2010). A new proposal of the classification of irrigation water. Revista Ciência Agronômica, 41, 349-357. Mukate, S. V., Panaskar, D. B., Wagh, V. M., & Baker, S. J. (2020). Understanding the influence of industrial and agricultural land uses on groundwater quality in semiarid region of Solapur, India. Environment, Development and Sustainability, 22, 3207-3238. Mukate, S., Wagh, V., Panaskar, D., Jacobs, J. A., & Sawant, A. (2019). Development of new integrated water quality index (IWQI) model to evaluate the drinking suitability of water. Ecological indicators, 101, 348-354. Naderi, M. M., Mirchi, A., Bavani, A. R. M., Goharian, E., & Madani, K. (2021). System dynamics simulation of regional water supply and demand using a food-energy-water nexus approach: Application to Qazvin Plain, Iran. Journal of Environmental Management, 280, 111843. Nawaz, R., Nasim, I., Irfan, A., Islam, A., Naeem, A., Ghani, N., Irshad, M.A., Latif, M., Nisa, B.U., & Ullah, R. (2023). Water quality index and human health risk assessment of drinking water in selected urban areas of a Mega City. Toxics, 11(7), 577. Pan, F., Zhu, S., Shang, L., Wang, P., Liu, L., & Liu, J. (2024). Assessment of drinking water quality and health risk using water quality index and multiple computational models: a case study of Yangtze River in suburban areas of Wuhan, central China, from 2016 to 2021. Environmental Science and Pollution Research, 1-23. Parhizkari, A., Hoseyni, M. K., Ranjbari, H. T., & Mahmoodi, A. (2016). Determining the appropriate economic strategy to conserve groundwater resources in Qazvin plain. Rural Development Strategies, 2(4), 477-498. Sadat-Noori, S. M., Ebrahimi, K., & Liaghat, A. M. (2014). Groundwater quality assessment using the Water Quality Index and GIS in Saveh-Nobaran aquifer, Iran. Environmental Earth Sciences, 71, 3827-3843. Selmane, T., Dougha, M., Djerbouai, S., Djemiat, D., & Lemouari, N. (2023). Groundwater quality evaluation based on water quality indices (WQI) using GIS: Maadher plain of Hodna, Northern Algeria. Environmental Science and Pollution Research, 30(11), 30087-30106. Shwetank, Suhas, and J.K. Chaudhary. 2020. A Comparative Study of Fuzzy Logic and WQI for Groundwater Quality Assessment. Procedia Computer Science 171, 1194-1203. Supardi, I. H. K., Abdullah, N. M., Ismail, B. H., Tugi, A., & Opaluwa, Y. D. (2023). Generating Water Quality Maps of Klang River Based on Geographic Information System (GIS) and Water Quality Index (WQI). International Journal of Sustainable Construction Engineering and Technology, 14(3), 408-418. Taheri, M., Gharaie, M. H. M., Mehrzad, J., Afshari, R., & Datta, S. (2017). Hydrogeochemical and isotopic evaluation of arsenic contaminated waters in an argillic alteration zone. Journal of geochemical exploration, 175, 1-10. Talebi, B., Sajjadi, N., & Sharmad, T. (2016). Hydrogeochemical evaluation of groundwater in the north of Qazvin Plain. Journal of Marine Science & Technology Research, 11(1), 66-76. (In Persian) World Health Organization (W.H.O). (2011). Guidelines for drinking-water quality. 38(4): 104-108. Zhao, X., Guo, H., Wang, Y., Wang, G., Wang, H., Zang, X., & Zhu, J. (2021). Groundwater hydrogeochemical characteristics and quality suitability assessment for irrigation and drinking purposes in an agricultural region of the North China plain. Environmental Earth Sciences, 80, 1-22. | ||
آمار تعداد مشاهده مقاله: 101 تعداد دریافت فایل اصل مقاله: 71 |