تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,506 |
تعداد مشاهده مقاله | 124,127,398 |
تعداد دریافت فایل اصل مقاله | 97,235,135 |
ارزیابی عملکرد مدلهای هیدرولوژیکی GR4J، GR2M وGR1A در شبیهسازی رواناب حوزه آبخیز سیلاخور لرستان | ||
نشریه علمی - پژوهشی مرتع و آبخیزداری | ||
دوره 77، شماره 3، آبان 1403، صفحه 335-352 اصل مقاله (1.17 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jrwm.2024.370851.1742 | ||
نویسندگان | ||
علی حقی زاده* ؛ لیلا قاسمی | ||
گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، خرمآباد، ایران | ||
چکیده | ||
در سالهای اخیر، وضعیت سیلابی بودن سرشاخههای دز در استان لرستان افزایشیافته است. این امر بهدلیل عوامل مختلفی ازجمله تغییراقلیم، کاهش پوشش گیاهی و افزایش ساختوساز در حریم رودخانهها است. در سال 1401، چندین بار در سرشاخههای دز در استان لرستان، سیل اتفاق افتاد. این سیلها باعث خسارات جانی و مالی زیادی شدند. مدلهای مفهومی جهانی بیش از دو دهه است که توسعهیافتهاند و اثربخشی آنها در شبیهسازی جریان رودخانه به اثبات رسیده است. در این مطالعه با استفاده از سه مدل روزانه (GR4J)، ماهانه (GR2M) و سالانه (GR1A) به شبیهسازی بارش-رواناب حوزه آبخیز سیلاخور-رحیمآباد پرداخته شد. بهمنظور ارزیابی عملکرد مدل، در طول دورههای واسنجی و اعتبارسنجی، از معیارهای ارزیابی نش- ساتکلیف (Nash)، مجذور میانگین مربعات خطا (RMSE) و خطای کل در حجم جریان (Bias) استفاده شد. نتایج بهدستآمده کاملاً معنیدار بودند. مدل GR1A در هر دو دوره واسنجی و اعتبارسنجی به ترتیب دارای ضرایب نش 1/86 و 7/71 میباشد، لذا این مدل دارای عملکرد خیلی خوب میباشد. برای دو مدل GR2M و GR4J نیز ضرایب نش در دو دورهی واسنجی و اعتبارسنجی به ترتیب برابر با 7/76، 2/70 و 4/61، 2/86 میباشند که بیانگر عملکرد خیلیخوب این مدلها در شبیهسازی بارش-رواناب میباشد. لیکن با توجه به مطلوب بودن دو معیار ارزیابی، یعنی RMSE و Bias در مدل GR1A، این نتیجه حاصل میشود که مدل GR1A عملکرد بهتری در شبیهسازی بارش- رواناب داشت. درنهایت نتایج حاصل بیانگر این است که مدلهای مفهومی GR4J، GR2M و GR1A مدلهای مناسبی برای شبیهسازی جریان در حوزه آبخیز سیلاخور-رحیمآباد میباشند. | ||
کلیدواژهها | ||
مدلسازی جریان؛ مدیریت منابع آب؛ استان لرستان؛ مدل بارش- رواناب | ||
مراجع | ||
Zarei, M., Ghanbarpour, M.R., Habibnezhad Roshan, M., & Shahedi, K. (2009). Streamflow Simulation Using IHACRES Rainfall-Runoff Model (Case Study: Kasilian Catchment). Jwmseir, 3 (8): 11-20. URL: http://jwmsei.ir/article-1-115-fa.html. (In Persian) Zandi Dareh Gharibi, F., Khorsandi Kouhanestani, Z., Mozayan, M., & Arman, N. (2017). Technical Note: Evaluating the proficiency of GR2M and GR4J rainfall-runoff models in Darehtakht Basin runoff simulation. Jwem, 9(3), 360-370. Amiri, A., Baharvand, S., & Rad, M. (2023). Evaluating the effectiveness of MISDc and GR4J rainfall-runoff models in simulating the daily discharge of ChamAnjir Khorramabad watershed. Integrated Watershed Management, 3(3), 84-94. Teimouri, M., & Alvandi, E. (2021). Rainfall-Runoff Modeling Using the eWater Source in the Chel-Chay Watershed, the Province of Golestan. Watershed Management Research Journal, 34(1), 16-29. doi: 10.22092/wmej.2020.342744.1334. (In Persian) Mostafazadeh, R., & Asgari, E. (2021). Performance assessment of GR4J rainfall-runoff model in daily flow simulation of Nirchai Watershed, Ardabil province. Irrigation and Water Engineering, 11(3), 79-95. doi: 10.22125/iwe.2021.128114. (In Persian) Adnan, R. M., Petroselli, A., Heddam, S., Santos, C. A. G., & Kisi, O. (2021). Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model. Stochastic Environmental Research and Risk Assessment, 35(3), 597-616. Alizadeh A, Rajabi A, Shabanlou S, Yaghoubi B, & Yosefvand F. (2021). Modeling longterm rainfall-runoff time series through wavelet-weighted regularization extreme learning machine. Earth Sci Inf, 14(2):1047–63. Alizadeh, A., Rajabi, A., Shabanlou, S., Yaghoubi, B., & Yosefvand, F. (2021). Modeling long-term rainfall-runoff time series through wavelet-weighted regularization extreme learning machine. Earth Science Informatics, 14, 1047-1063. Bachir, S., Nouar, B., Hicham, C., Azzedine, H., & Larbi, D. (2015). Application of GR2M for rainfall-runoff modeling in Kébir Rhumel Watershed, north east of Algeria. World applied sciences journal, 33(10), 1623-1630. Bergström, S., & Lindström, G. (2015). Interpretation of runoff processes in hydrological modelling—experience from the HBV approach. Hydrological Processes, 29(16), 3535-3545. Bergström, S. (1992). The HBV model–its structure and its applications. SMHI RH, (4). Beven, K. J., & Kirkby, M. J. (1976). Towards a simple, physically-based, variable contributing area model of catchment hydrology. University of Leeds. Bouguerra, S. A., & Mansour, B. (2023). Rainfall-flow Modeling Using a Global Conceptual Model: Case of the Beni Bahdel Watershed (Northwest of Algeria). Journal of Water Management Modeling. Boulariah, O., Longobardi, A., & Meddi, M. (2017). Statistical comparison of nonlinear rainfall-runoff models for simulation in Africa North-West semi-arid areas. In Proceedings of the 15th International Conference on Environment Science and Technology, Rhodes, Greece (Vol. 31). Chang, T. K., Talei, A., Chua, L. H., & Alaghmand, S. (2018). The impact of training data sequence on the performance of neuro-fuzzy rainfall-runoff models with online learning. Water, 11(1), 52. Chen, Y., Ren, Q., Huang, F., Xu, H., & Cluckie, I. (2011). Liuxihe model and its modeling to river basin flood. Journal of Hydrologic Engineering, 16(1), 33-50. Croke, B., Andrew, F., Spate, J., & Cuddy. (2005). S. www.toolkit.net.au/ihacres. Devia, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A review on hydrological models. Aquatic procedia, 4, 1001-1007. Dezetter, A., Girard, S., Paturel, J. E., Mahé, G., Ardoin-Bardin, S., & Servat, E. (2008). Simulation of runoff in West Africa: Is there a single data-model combination that produces the best simulation results? Journal of Hydrology, 354(1-4), 203-212. Ditthakit, P., Pinthong, S., Salaeh, N., Binnui, F., Khwanchum, L., Kuriqi, A., ... & Pham, Q. B. (2021). Performance evaluation of a two-parameters monthly rainfall-runoff model in the Southern Basin of Thailand. Water, 13(9), 1226. Ditthakit, P., Pinthong, S., Salaeh, N., Weekaew, J., Tran, T. T., & Pham, Q. B. (2023). Comparative study of machine learning methods and GR2M model for monthly runoff prediction. Ain Shams Engineering Journal, 14(4), 101941. Fathi, M. M., Awadallah, A. G., Abdelbaki, A. M., & Haggag, M. (2019). A new Budyko framework extension using time series SARIMAX model. Journal of hydrology, 570, 827-838. Flores, N., Rodríguez, R., Yépez, S., Osores, V., Rau, P., Rivera, D., & Balocchi, F. (2021). Comparison of three daily rainfall-runoff hydrological models using four evapotranspiration models in four small forested watersheds with different land cover in South-Central Chile. Water, 13(22), 3191. Ha, S., Liu, D., & Mu, L. (2021). Prediction of Yangtze River streamflow based on deep learning neural network with El Niño–Southern Oscillation. Scientific reports, 11(1), 11738. Hadour, A., Mahé, G., & Meddi, M. (2020). Watershed based hydrological evolution under climate change effect: An example from North Western Algeria. Journal of Hydrology: Regional Studies, 28, 100671. Henriksen, H. J., Troldborg, L., Nyegaard, P., Sonnenborg, T. O., Refsgaard, J. C., & Madsen, B. (2003). Methodology for construction, calibration and validation of a national hydrological model for Denmark. Journal of Hydrology, 280(1-4), 52-71. Herath, H. M. V. V., Chadalawada, J., & Babovic, V. (2021). Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling. Hydrology and Earth System Sciences, 25(8), 4373-4401. Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water, 10(11), 1543. Huo, W., Li, Z., Wang, J., Yao, C., Zhang, K., & Huang, Y. (2019). Multiple hydrological models’ comparison and an improved Bayesian model averaging approach for ensemble prediction over semi-humid regions. Stochastic environmental research and risk assessment, 33, 217-238. Jaiswal, R. K., Ali, S., & Bharti, B. (2020). Comparative evaluation of conceptual and physical rainfall–runoff models. Applied water science, 10, 1-14. Kabouya, M. (1990). Modélisation pluie-débit aux pas de temps mensuel et annuel en Algérie septentrionale (Doctoral dissertation, Paris 11). Kratzert, F., Klotz, D., Shalev, G., Nevo, S., Klambauer, G., Nearing, G., & Hochreiter, S. (2020). Towards deep learning-based flood forecasting for ungauged basins (No. EGU2020-8932). Copernicus Meetings. Lee, H., McIntyre, N., Wheater, H., & Young, A. (2005). Selection of conceptual models for regionalisation of the rainfall-runoff relationship. Journal of Hydrology, 312(1-4), 125-147. Li, Z. J., & Zhang, K. (2008). Comparison of three GIS-based hydrological models. Journal of Hydrologic Engineering, 13(5), 364-370. Liu, Y., Zhang, K., Li, Z., Liu, Z., Wang, J., & Huang, P. (2020). A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. Journal of Hydrology, 590, 125440. Lyon, S. W., King, K., Polpanich, O. U., & Lacombe, G. (2017). Assessing hydrologic changes across the Lower Mekong Basin. Journal of Hydrology: Regional Studies, 12, 303-314. Makhlouf, Z., & Michel, C. (1994). A two-parameter monthly water balance model for French watersheds. Journal of Hydrology, 162(3-4), 299-318. Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology, 98, 257-277. Mouelhi, S., Michel, C., Perrin, C., & Andréassian, V. (2006). Stepwise development of a two-parameter monthly water balance model. Journal of Hydrology, 318(1-4), 200-214. Mouelhi, S. (2003). Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier (Doctoral dissertation, ENGREF Paris). Nounangnonhou, T. C., Fifatin, F., Lokonon, B. E., Acakpovi, A., & Sanya, E. A. (2018). Modelling and prediction of Ouémé (Bénin) river flows by 2040 based on GR2M approach. O’Connor, P., Murphy, C., Matthews, T., & Wilby, R. L. (2021). Reconstructed Monthly River flows for Irish catchments 1766–2016. Geoscience Data Journal, 8(1), 34-54. Okkan, U., & Fistikoglu, O. (2014). Evaluating climate change effects on runoff by statistical downscaling and hydrological model GR2M. Theoretical and applied climatology, 117, 343-361. Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of hydrology, 279(1-4), 275-289. Rintis, H., Suyanto, & Setyoasri, Y. P. (2016). Rainfall-discharge simulation in Bah Bolon Catchment area by Mock method, NRECA method, and GR2M method. Applied Mechanics and Materials, 845, 24-29. Rwasoka, D. T., Madamombe, C. E., Gumindoga, W., & Kabobah, A. T. (2014). Calibration, validation, parameter indentifiability and uncertainty analysis of a 2–parameter parsimonious monthly rainfall-runoff model in two catchments in Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 67, 36-46. Schaefli, B., & Gupta, H. V. (2007). Do Nash values have value? Hydrological processes, 21, 2075-2080. Song, X. M., Kong, F. Z., Zhan, C. S., & Han, J. W. (2012). Hybrid optimization rainfall-runoff simulation based on Xinanjiang model and artificial neural network. Journal of Hydrologic Engineering, 17(9), 1033-1041. Sugawara, M. (1974). Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanaga River, and Nam Mune. Research Notes of the National Research Center for Disaster Prevention, 12, 1-64. Swain, J. B., & Patra, K. C. (2017). Streamflow estimation in ungauged catchments using regionalization techniques. Journal of Hydrology, 554, 420-433. Todini, E. (1996). The ARNO rainfall—runoff model. Journal of hydrology, 175(1-4), 339-382. Topalović, Ž., Todorović, A., & Plavšić, J. (2020). Evaluating the transferability of monthly water balance models under changing climate conditions. Hydrological Sciences Journal, 65(6), 928-950. Venkatesan, E., & Mahindrakar, A. B. (2019). Forecasting floods using extreme gradient boosting-a new approach. International Journal of Civil Engineering and Technology, 10(2), 1336-1346. Wang, W. C., Chau, K. W., Cheng, C. T., & Qiu, L. (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of hydrology, 374(3-4), 294-306. Zamoum, S., & Souag-Gamane, D. (2019). Monthly streamflow estimation in ungauged catchments of northern Algeria using regionalization of conceptual model parameters. Arabian Journal of Geosciences, 12, 1-14. Zhao, R. J., & Liu, X. R. (1995). The Xinanjiang model. Computer models of watershed hydrology., 215-232. | ||
آمار تعداد مشاهده مقاله: 124 تعداد دریافت فایل اصل مقاله: 102 |