تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,599 |
تعداد دریافت فایل اصل مقاله | 97,221,268 |
Detection of Methane-Oxidizing Bacteria and their Use in Petroleum Hydrocarbon Removal | ||
Pollution | ||
دوره 11، شماره 1، بهمن 2024، صفحه 203-213 اصل مقاله (1.43 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2024.379525.2471 | ||
نویسندگان | ||
Anwar A Maki؛ Asaad M.R. Al-Taee* | ||
Department of Biological Development, Marine Science Center, University of Basrah, Basrah, Iraq | ||
چکیده | ||
Methylotrophic bacteria have been identified as using carbon one (C1) compounds such as methane. In recent decades, the priority has been on determining new genera of bacteria that have the capability to consume methane and mitigate the effects of global warming. In order to isolate methane-oxidizing bacteria, oil polluted soil samples were collected from Mushrif gas station in Basrah Governorate/southern Iraq. The analysis of 16srRNA genes identified Paenibacillus sp. and Paenibacillus lautus, which were able to consume methane as its sole carbon source in NMS medium, also detect the pMMO gene (encoded methane monooxygenase enzyme) by real-time PCR. AS far as we know, P. lautus was found for the first time to consume methane as a sole carbon and energy source. These bacteria were able to exploite crude oil as their sole source of carbon and energy, recorded the highest growth for Paenibacillus sp and P. lautus at 1.9 and 0.5 (OD600) after 5 days of incubation successively. The results of gas chromatography analysis revealed high degradation of these bacteria for aliphatic compounds, reaching 92.8% and 89.41% for Paenibacillus sp. and P. lautus, respectively. Additionally, they exhibited high rates of degradation of aromatic compounds at 98.8% and 97.28%, respectively. | ||
کلیدواژهها | ||
Biodegradation؛ Methylotrophic؛ qPCR؛ Paenibacillus lautus | ||
مراجع | ||
Ashok, A., Cusack, M., Saderne, V., Krishnakumar, P. K., Rabaoui, L., Qurban, M. A., Duarte, C. M., & Agustí, S. )2019(. Accelerated burial of petroleum hydrocarbons in Arabian Gulf blue carbon repositories. Science of the Total Environment, 669; 205-212. Chistoserdova, L. & Kalyuzhnaya, M. G. (2018). Current trends in methylotrophy. Trends in Microbiology, 26;703-714. Collins, W., Orbach, R., Bailey, M., Biraud, S., Coddington, I., DiCarlo, D., Peischl, J., Radhakrishnan, A. & Schimel, D. (2022). Monitoring methane emissions from oil and gas operations. Optics Express., 30(14); 24326-24351. De Marco, P., Pacheco, C. C., Figueiredo, A. R. & Moradas-Ferreira, P. (2004). Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiology Letters, 234;75-80. Devatha, C., Vishnu Vishal, A. & Purna Chandra Rao, J. (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science, 9(89);1-10. Di Marcantonio, C., Chiavola, A., Noce, A., Straccamore, E., Giannuzzi, A., Jirillo, J., Gallo, F. & Boni, M. R. (2023). A sustainable approach to enhance heavy hydrocarbons removal in landfarming treatment. Biodegradation; 34;417–430. Dianou, D. & Adachi, K. (1999). Characterization of methanotrophic bacteria isolated from a subtropical paddy field. FEMS microbiology letters, 173(1); 163-173. Ghashghavi, M., Jetten, M. S. & Lüke, C. (2017). Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. Amb Express, 7(162); 1-11. Giri, D. D., Singh, S. K., Giri, A., Dwivedi, H. & Kumar, A. (2021). Bioremediation potential of methylotrophic bacteria. Microbe Mediated Remediation of Environmental Contaminants. Elsevier; 199-207. Grady, E. N., MacDonald, J., Liu, L., Richman, A. & Yuan, Z.-C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial cell factories, 15(203); 1-18. Graham, D. W., Korich, D. G., LeBlanc, R. P., Sinclair, N. A. & Arnold, R. G. (1992). Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Applied and Environmental Microbiology, 58(7);2231-2236. Guan, Y., Li, Z., Kang, Y.-H. & Lee, M.-K. (2023). Isolation, Characterization and Whole-Genome Analysis of Paenibacillus andongensis sp. nov. from Korean Soil. Journal of Microbiology and Biotechnology, 33(6);753-759. Haleyur, N., Shahsavari, E., Jain, S. S., Koshlaf, E., Ravindran, V. B., Morrison, P. D., Osborn, A. M. & Ball, A. S. (2019). Influence of bioaugmentation and biostimulation on PAH degradation in aged contaminated soils: response and dynamics of the bacterial community. Journal of environmental management, 238; 49-58. Hamad, A. A., Moubasher, H. A., Moustafa, Y. M. & Mohamed, N. H. (2021). Petroleum hydrocarbon bioremediation using native fungal isolates and consortia. The Scientific World Journal, 6641533; 13. Jhala, Y., Vyas, R., Shelat, H., Patel, H. & Patel, K. (2014). Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World Journal of Microbiology and Biotechnology, 30(6); 1845-1860. Khan, M. A. I., Biswas, B., Smith, E., Naidu, R. & Megharaj, M. (2018). Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil-a review. Chemosphere, 212; 755-767. Khider, M. L., Brautaset, T. & Irla, M. (2021). Methane monooxygenases: central enzymes in methanotrophy with promising biotechnological applications. World Journal of Microbiology and Biotechnology, 37(4); 1-11. Macey, M. C., Pratscher, J., Crombie, A. T. & Murrell, J. C. (2020). Impact of plants on the diversity and activity of methylotrophs in soil. Microbiome, 8; 31. Maki, A. A., Al-Taee, A. M. & Atwan, Z. W. (2023). Measuring the Degradation of Aromatic Compounds Using Methylorubrum extorquens Isolated from Oil-Contaminated Soils in Southern Iraq. Mesopotamian Journal of Marine Sciences, 38(1); 9-20. Maki, A. A., Al-Taee, A. M. & Atwan, Z. W. (2024). Molecular Identification of Methylorubrum extorquens using PCR-Amplified MxaF Gene Fragments as A Molecular Marker. Baghdad Science Journal, 21(1); 0019-0019. Martínez-Cuesta, R., Conlon, R., Wang, M., Blanco-Romero, E., Durán, D., Redondo-Nieto, M., Dowling, D., Garrido-Sanz, D., Martin, M. & Germaine, K. (2023). Field scale biodegradation of total petroleum hydrocarbons and soil restoration by Ecopiles: microbiological analysis of the process. Frontiers in Microbiology, 14; 1158130. Mauricio-Gutiérrez, A., Machorro-Velázquez, R., Jiménez-Salgado, T., Vázquez-Crúz, C., Sánchez-Alonso, M. P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils. Archives of Environmental Protection, 46(4); 59-69. Mosin, O. & Ignatov, I. (2014). Evolution, metabolism and biotechnological usage of methylotrophic microorganisms. Eur J Mol Biotechnol, 5;131-48. Ossai, I. C., Ahmed, A., Hassan, A. &Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17(1); 100526. Rani, V., Bhatia, A., Nain, L., Tomar, G. S. &Kaushik, R. (2021). Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India. World Journal of Microbiology and Biotechnology, 37(4); 1-22. Samanta, D. & Sani, R. K. (2023). Methane Oxidation via Chemical and Biological Methods: Challenges and Solutions. Methane, 2(3); 279-303. Semrau, J. D., DiSpirito, A. A., Gu, W. & Yoon, S. (2018). Metals and methanotrophy. Applied and environmental microbiology, 84(6);e02289-17. Shibulal, B., Al-Bahry, S. N., Al-Wahaibi, Y. M., Elshafie, A. E., Al-Bemani, A. S. & Joshi, S. J. (2017). The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions. PLoS One, 12(2); e0171432. Su, Q., Yu, J., Fang, K., Dong, P., Li, Z., Zhang, W., Liu, M., Xiang, L. & Cai, J. (2023). Microbial removal of petroleum hydrocarbons from contaminated soil under arsenic stress. Toxics, 11(2); 143. Trimurtulu, N. (2021). Chapter-2 Perspectve Novel Approach to Enhance Soil Bioremediation by Methanotrophs. Multidisciplinary Research and Development, 31. Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource technology, 223; 277-286. Wang, M., Ding, M. & Yuan, Y. (2023). Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering, 10(3); 347. Whittenbury, R., Philips, K.C., & Wilkinson, J.F. (1970). Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology, 61(2); 205-218. Wu, H., Xie, L., Wu, Y., Chen, L., Jiang, B., Chen, X. & Wu, Y. (2023). Improving cleaner production of human activities to mitigate total petroleum hydrocarbons accumulation in coastal environment. Marine Pollution Bulletin, 186; 114473. Žvirgždas, J., Paškevičius, A., Petrovas, S., Galginienė, I. & Iljasevičius, K. (2023). Isolation, selection, and use of oil-degrading microorganisms for biological treatment of contaminated soil. Polish journal of environmental studies, 32(3); 2455-2464. | ||
آمار تعداد مشاهده مقاله: 116 تعداد دریافت فایل اصل مقاله: 180 |