تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,006 |
تعداد دریافت فایل اصل مقاله | 97,221,831 |
Predicting Chemical Toxicity in Rivers Near Electricity Station Outlet Discharges Using Quantitative Structure-Activity Relationship (QSAR) | ||
Pollution | ||
دوره 11، شماره 1، بهمن 2024، صفحه 191-202 اصل مقاله (1.53 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2024.378640.2440 | ||
نویسندگان | ||
Hasan Khadim Nimr* ؛ Maitham Abdullah Sultan؛ Njah K Nimr | ||
Environment and Water Directorate, Ministry of Science and Technology, Baghdad, Iraq | ||
چکیده | ||
In this study, chemical toxicity prediction was conducted using in silico approaches due to their importance for human health and environmental concerns. Analysis of Tigris River samples near a power station outlet revealed ten compounds, with three identified as toxic by in silico tools. TOXTREE software classified three compounds as high hazards, including heavy aromatic naphtha, light aromatic naphtha, and naphthalene, which was corroborated by QSAR database analysis. QSAR data indicated positive Ames tests for eight naphtha derivatives, suggesting their mutagenic potential. Molecular docking demonstrated strong binding affinity (-6.6 kcal/mol) between naphtha and cytochrome p450, crucial for xenobiotic metabolism, indicating potential interference with detoxification processes. This study highlights the utility of in silico methods in identifying and assessing environmental chemical hazards, emphasizing the importance of monitoring and mitigating toxic pollutants. Further investigation into the long-term environmental impact and bioaccumulation potential of these identified toxic compounds is warranted to ensure comprehensive risk assessment and management. | ||
کلیدواژهها | ||
QSAR؛ TOXTREE؛ Molecular Docking؛ CYP45 | ||
مراجع | ||
Agnihotry, S., & Hussain, I. (n.d.). Ramachandran Plot Protein structure prediction. https://bip.weizmann.ac.il/toolbox/structure/validation.htm Armstrong, C. T., Mason, P. E., Anderson, J. L. R., & Dempsey, C. E. (2016). Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels. Scientific Reports, 6. https://doi.org/10.1038/srep21759 Beillard, E., Pallisgaard, N., van der Velden, V. H. J., Bi, W., Dee, R., van der Schoot, E., Delabesse, E., Macintyre, E., Gottardi, E., Saglio, G., Watzinger, F., Lion, T., van Dongen, J. J. M., Hokland, P., & Gabert, J. (2003). Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using “real-time” quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - A Europe against cancer program. Leukemia, 17(12), 2474–2486. https://doi.org/10.1038/sj.leu.2403136 Bharath, B. R., Damle, H., Ganju, S., & Damle, L. (2020). In silico screening of known small molecules to bind ACE2 specific RBD on Spike glycoprotein of SARS-CoV-2 for repurposing against COVID-19. F1000Research, 9. https://doi.org/10.12688/f1000research.24143.1 Ibrahim, I. T., Uzairu, A., & Sagagi, B. (2019). QSAR, molecular docking approach on the estrogenic activities of persistent organic pollutants using quantum chemical disruptors. SN Applied Sciences, 1(12). https://doi.org/10.1007/s42452-019-1624-8 Jafary, F., Jafari, S., & Ganjalikhany, M. R. (2021a). In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86380-2 Jafary, F., Jafari, S., & Ganjalikhany, M. R. (2021b). In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86380-2 Jeliazkova, N., & Jeliazkov, V. (2011). AMBIT RESTful web services: An implementation of the OpenTox application programming interface. Journal of Cheminformatics, 3(1). https://doi.org/10.1186/1758-2946-3-18 Jia, C., & Batterman, S. (2010). A critical review of naphthalene sources and exposures relevant to indoor and outdoor air. In International Journal of Environmental Research and Public Health (Vol. 7, Issue 7, pp. 2903–2939). MDPI. https://doi.org/10.3390/ijerph7072903 Kim, J., Choi, K., Kim, K., & Kim, D. (2014). QSAR Approach for Toxicity Prediction of Chemicals Used in Electronics Industries. Korean Journal of Environmental Health Sciences, 40(2), 105–113. https://doi.org/10.5668/jehs.2014.40.2.105 Mąkosza, M. (2020). Electrophilic and Nucleophilic Aromatic Substitutions are Mechanistically Similar with Opposite Polarity. Chemistry - A European Journal, 26(67), 15346–15353. https://doi.org/10.1002/chem.202003770 Mansouri, K., Grulke, C. M., Judson, R. S., & Williams, A. J. (2018). OPERA models for predicting physicochemical properties and environmental fate endpoints. Journal of Cheminformatics, 10(1). https://doi.org/10.1186/s13321-018-0263-1 Oleiwi, A. S., & Al-Dabbas, M. (2022). Assessment of Contamination along the Tigris River from Tharthar-Tigris Canal to Azizziyah, Middle of Iraq. Water (Switzerland), 14(8). https://doi.org/10.3390/w14081194 Porter, A. J., & Hayden, N. J. (n.d.). Nonylphenol in the Environment: A Critical Review. Rasheed, K. A. (2016). Study the Efficiency of two waste Treatment Plants in the Al-Karkh and Al-Rusafa of Baghdad Region in 2015. In J. Int. Environmental Application & Science (Vol. 11, Issue 2). Ratnayaka, D. D., & Michael Johnson, K. (2009). Aromatic Hydrocarbon Chemistry, Microbiology and Biology of Water. Raunio, H. (2011a). In silico toxicology non-testing methods. Frontiers in Pharmacology, JUN. https://doi.org/10.3389/fphar.2011.00033 Raunio, H. (2011b). In silico toxicology non-testing methods. Frontiers in Pharmacology, JUN. https://doi.org/10.3389/fphar.2011.00033 Rim, K. T. (2020). In silico prediction of toxicity and its applications for chemicals at work. In Toxicology and Environmental Health Sciences (Vol. 12, Issue 3, pp. 191–202). Korean Society of Environmental Risk Assessment and Health Science. https://doi.org/10.1007/s13530-020-00056-4 Rose, G. D. (2009). Hydrophobicity Secondary Structure in Protein Analysis. Roy, K., & Kar, S. (2016). In silico models for ecotoxicity of pharmaceuticals. In Methods in Molecular Biology (Vol. 1425, pp. 237–304). Humana Press Inc. https://doi.org/10.1007/978-1-4939-3609-0_12 Skarysz, A., Alkhalifah, Y., Darnley, K., Eddleston, M., Hu, Y., McLaren, D. B., Nailon, W. H., Salman, D., Sykora, M., Thomas, C. L. P., & Soltoggio, A. (2018). Convolutional neural networks for automated targeted analysis of raw gas chromatography-mass spectrometry data. Proceedings of the International Joint Conference on Neural Networks, 2018-July. https://doi.org/10.1109/IJCNN.2018.8489539 Upreti, S., Prusty, J. S., Pandey, S. C., Kumar, A., & Samant, M. (2021). Identification of novel inhibitors of angiotensin-converting enzyme 2 (ACE-2) receptor from Urtica dioica to combat coronavirus disease 2019 (COVID-19). Molecular Diversity, 25(3), 1795–1809. https://doi.org/10.1007/s11030-020-10159-2 Vijay, U., Gupta, S., Mathur, P., Suravajhala, P., & Bhatnagar, P. (2018). Microbial Mutagenicity Assay: Ames Test. BIO-PROTOCOL, 8(6). https://doi.org/10.21769/bioprotoc.2763. | ||
آمار تعداد مشاهده مقاله: 129 تعداد دریافت فایل اصل مقاله: 178 |