تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,115,691 |
تعداد دریافت فایل اصل مقاله | 97,219,918 |
Enhanced Monitoring of Water Quality in Crude Oil Desalting/Dehydration Plant (DDP) using Soft Sensing Techniques | ||
Pollution | ||
دوره 11، شماره 1، بهمن 2024، صفحه 175-190 اصل مقاله (1010.22 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2024.377336.2401 | ||
نویسندگان | ||
Farzaneh Naimi Rad؛ Mir Mohammad Khalilipour langroudi* ؛ Bahareh Bidar؛ Farhad Shahraki؛ Jafar Sadeghi | ||
Center for Process Integration and Control (CPIC), Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran | ||
چکیده | ||
The present study introduces a novel soft sensor based on State Dependent Parameter (SDP) models utilizing the Local Instrumental Variables (LIV) method for monitoring a crude oil Desalting and Dehydration Plant (DDP) system. A key advantage of the LIV modeling method is its ability to interpolate directly without necessitating extensive model parameterization. Additionally, the inherent complexity and non-linearity of the process are effectively addressed by LIV-based soft sensors, which require fewer process variables, thereby reducing training time and computational complexity. Two distinct soft sensors were developed to assess the salinity efficiency and water cut efficiency of the DDP system. The efficacy of these soft sensors was evaluated using a dedicated testing dataset, revealing a robust correlation between salinity efficiency, water cut efficiency, and five secondary parameters. Comparisons between SDP-LIV model predictions and real observations of the DDP process show strong agreement. By leveraging these developed soft sensors, continuous evaluation of product properties is possible with minimal delay compared to traditional laboratory analyses. This capability is crucial for pollution control and environmental monitoring, as it allows for real-time detection and mitigation of contaminants in crude oil processing. Lastly, the performance of the proposed soft sensor is benchmarked against other models, such as Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN), demonstrating superior predictive capabilities. This study underscores the potential of SDP-LIV-based soft sensors in enhancing environmental protection and operational efficiency in crude oil processing. | ||
کلیدواژهها | ||
Water quality؛ Soft sensor؛ Crude oil desalting؛ dehydration plant (DDP)؛ State-dependent parameter (SDP)؛ Local instrumental variable (LIV) | ||
مراجع | ||
Abdul-Wahab, S., Elkamel, A., Madhuranthakam, C., & Al-Otaibi, M. (2006). Building inferential estimators for modeling product quality in a crude oil desalting and dehydration process. Chem. Eng. Process. Process Intensif., 45(7), 568-577. AbdulJalee, E., & Aparna, K. (2016). Neuro-fuzzy Soft Sensor Estimator for Benzene Toluene Distillation Column. Procedia Technol., 25, 92-99. Al-Otaibi, M. (1999). Experimental investigation of Kuwaiti crude oil desalting/dehydration process. (M.S. Thesis), Kuwait University. Al-Otaibi, M. B. (2004). Modelling and optimising of crude oil desalting process. (Ph.D. Thesis), Loughborough University Al-Otaibi, M. B., Elkamel, A., Al-Sahhaf, T., & Ahmed, A. S. (2003). Experimental investigation of crude oil desalting and dehydration. Chem. Eng. Commun., 190(1), 65-82. Al-Otaibi, M. B., Elkamel, A., Nassehi, V., & Abdul-Wahab, S. A. (2005). A computational intelligence based approach for the analysis and optimization of a crude oil desalting and dehydration process. Energy fuels, 19(6), 2526-2534. Bidar, B., Khalilipour, M. M., Shahraki, F., & Sadeghi, J. (2018). A data-driven soft-sensor for monitoring ASTM-D86 of CDU side products using local instrumental variable (LIV) technique. J. Taiwan Inst. Chem. Eng., 84, 49-59. Bidar, B., Sadeghi, J., Shahraki, F., & Khalilipour, M. M. (2017). Data-driven soft sensor approach for online quality prediction using state dependent parameter models. Chemom. Intell. Lab. Syst., 162, 130-141. Bidar, B., Shahraki, F., Sadeghi, J., & Khalilipour, M. M. (2018). Soft sensor modeling based on multi-state-dependent parameter models and application for quality monitoring in industrial sulfur recovery process. IEEE Sens. J., 18(11), 4583-4591. Curreri, F., Fiumara, G., & Xibilia, M. G., (2020). Input Selection Methods for Soft Sensor Design: A Survey. Future Internet, 12(6), 97. Dadari, S., Rahimi, M., & Zinadini, S. (2016). Crude oil desalter effluent treatment using high flux synthetic nanocomposite NF membrane-optimization by response surface methodology. Desalination, 377, 34-46. Fan, J. (2018). Local polynomial modelling and its applications: monographs on statistics and applied probability, CRC Press, Routledge. Fan, J., & Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods Springer-Verlag. New York. Fortuna, L., Graziani, S., Rizzo, A., & Xibilia, M. G. (2007). Soft sensors for monitoring and control of industrial processes. London: Springer. Gharehbaghi, H., & Sadeghi, J. (2016). A Novel Approach for Prediction of Industrial Catalyst Deactivation Using Soft Sensor Modeling. Catalysts, 6(7), 93. Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models, volume 43 of Monographs on Statistics and Applied Probability. In: Chapman & Hall, London. He, Y.-L., Geng, Z., & Zhu, Q.-X. (2015). Data driven soft sensor development for complex chemical processes using extreme learning machine. Chem. Eng. Res. Des., 102, 1-11. Herceg, S., Andrijić, Ž. U., & Bolf, N. (2019). Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models. Chem. Eng. Res. Des., 149, 95-103. Hosseinpour, F., Ghader, S., Rahimpour, M. R., & Bagheri, H. (2019). Modification of an industrial crude oil desalting unit by electric mixing to improve the dehydration efficiency. J. Chem. Technol. Metall., 54(1), 124-134. Jolliffe, I. T. (2002). Principal component analysis (Second ed. ed.): Springer. Kadlec, P., Gabrys, B., & Strandt, S. (2009). Data-driven soft sensors in the process industry. Comput. Chem. Eng., 33(4), 795-814. Kamari, A., Bahadori, A., & Mohammadi, A. H. (2015). On the determination of crude oil salt content: Application of robust modeling approaches. J. Taiwan Inst. Chem. Eng., 55, 27-35. Kanno, Y., & Kaneko, H. (2020). Ensemble just-in-time model based on Gaussian process dynamical models for nonlinear and dynamic processes. Chemom. Intell. Lab. Syst., 203, 104061. Li, K., Xu, W., Han, Y., Ge, F., & Wang, Y. a. (2019). Soft sensor for the moisture content of crude oil based on multi-kernel Gaussian process regression optimized by an adaptive variable population fruit fly optimization algorithm. Trans. Inst. Meas. Control, 42(4), 770-785. Liu, J. (2014). Developing a soft sensor based on sparse partial least squares with variable selection. J. Process Control , 24(7), 1046-1056. Mahdi, K., Gheshlaghi, R., Zahedi, G., & Lohi, A. (2008). Characterization and modeling of a crude oil desalting plant by a statistically designed approach. J. Petrol. Sci. Eng., 61(2–4), 116-123. Mahdi, K., Gheshlaghi, R., Zahedi, G., & Lohi, A. (2008). Characterization and modeling of a crude oil desalting plant by a statistically designed approach. J. Petrol. Sci. Eng., 61(2-4), 116-123. Moghadam, R. P., Sadeghi, J., & Shahraki, F. (2021). Soft sensor model for monitoring and online control based on a dynamic model and local instrumental variable technique. Int. J. Modell. Identif. Control, 39(3), 192-203. Nasehi, S., Sarraf, M. J., Ilkhani, A., Mohammadmirzaie, M. A., & Fazaelipoor, M. H. (2019). Statistical evaluation and Optimization of Crude Oil Desalting Unit: A Case Study of Bandar Abbas oil Refinery. J. Biochem. Technol., 10(2), 59-68. Pan, H., Su, T., Huang, X., & Wang, Z. (2021). LSTM-based soft sensor design for oxygen content of flue gas in coal-fired power plant. Trans. Inst. Meas. Control, 43(1), 78-87. Ranaee, E., Ghorbani, H., Keshavarzian, S., Abarghoei, P. G., Riva, M., Inzoli, F., & Guadagnini, A. (2021). Analysis of the performance of a crude-oil desalting system based on historical data. Fuel, 291, 120046. Roodbari, N. H., Badiei, A., Soleimani, E., & Khaniani, Y. (2016). Tweens demulsification effects on heavy crude oil/water emulsion. Arabian J. Chem., 9, S806-S811. Shi, X., & Xiong, W. (2018). LWS based PCA subspace ensemble model for soft sensor development. IFAC-Papers OnLine, 51(18), 649-654. Sotelo, C., Favela-Contreras, A., Sotelo, D., Beltrán-Carbajal, F., & Cruz, E. (2018). Control Structure Design for Crude Oil Quality Improvement in a Dehydration and Desalting Process. Arabian J. Sci. Eng., 43(11), 6579–6594. Souza, F. A. A., Araújo, R., Matias, T., & Mendes, J., (2013). A multilayer-perceptron based method for variable selection in soft sensor design. J. Process Control, 23(10), 1371-1378. Sun, K., Huang, S.-h., Jang, S.-S., & Wong, D. S.-H. (2016). Development of soft sensor with neural network and nonlinear variable selection for crude distillation unit process. Comput. Aided Chem. Eng., 38, 337-342. Wang, D., Liu, J., & Srinivasan, R. (2010). Data-Driven Soft Sensor Approach for Quality Prediction in a Refining Process. IEEE Trans. Ind. Inf., 6(1), 11 - 17. Young, P. (1998). Data-based mechanistic modeling of engineering systems. J. Vib. Control, 4(1), 5-28. Young, P. C. (2011). Recursive estimation and time-series analysis: An introduction for the student and practitioner: Springer Science & Business Media. Zhao, T., Li, P., & Cao, J. (2019). Soft sensor modeling of chemical process based on self-organizing recurrent interval type-2 fuzzy neural network. ISA Trans., 84, 237-246. Zheng, K., & Funatsu, K. (2018). Partial constrained least squares (PCLS) and application in soft sensor. Chemom. Intell. Lab. Syst., 177, 64-73. Zhongda, T., Shujiang, L., Yanhong, W., & Xiangdong, W. (2016). A multi-model fusion soft sensor modelling method and its application in rotary kiln calcination zone temperature prediction. Trans. Inst. Meas. Control, 38(1), 110-124. | ||
آمار تعداد مشاهده مقاله: 111 تعداد دریافت فایل اصل مقاله: 176 |